首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Heat shock proteins (HSPs), which are important for a number of different intracellular functions, are occasionally found on the surface of cells. The function of heat shock protein on the cell surface is not understood, although it has been shown to be greater in some tumor cells and some virally infected cells. Surface expression of both glycoprotein 96 (gp96) and Hsp70 occurs on tumor cells, and this expression correlates with natural killer cell killing of the cells. We examined the surface expression of gp96 and Hsp70 on human breast cell lines MCF7, MCF10A, AU565, and HS578, and in primary human mammary epithelial cells by immunofluorescence microscopy and flow cytometry. The nonmalignant cell lines HS578, MCF10A, and HMEC showed no surface expression of gp96, whereas malignant cell lines MCF7 and AU565 were positive for gp96 surface expression. All of the breast cell lines examined showed Hsp70 surface expression. These results also confirm previous studies, demonstrating that Hsp70 is on the plasma membrane of tumor cell lines. Given the involvement of heat shock proteins, gp96 and Hsp70, in innate and adaptive immunity, these observations may be important in the immune response to tumor cells.  相似文献   

3.
There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.  相似文献   

4.
Breast cancers expressing human embryonic stem cell (hESC)-associated genes are more likely to progress than well-differentiated cancers and are thus associated with poor patient prognosis. Elevated proliferation and evasion of growth control are similarly associated with disease progression, and are classical hallmarks of cancer. In the current study we demonstrate that the hESC-associated factor Nodal promotes breast cancer growth. Specifically, we show that Nodal is elevated in aggressive MDA-MB-231, MDA-MB-468 and Hs578t human breast cancer cell lines, compared to poorly aggressive MCF-7 and T47D breast cancer cell lines. Nodal knockdown in aggressive breast cancer cells via shRNA reduces tumour incidence and significantly blunts tumour growth at primary sites. In vitro, using Trypan Blue exclusion assays, Western blot analysis of phosphorylated histone H3 and cleaved caspase-9, and real time RT-PCR analysis of BAX and BCL2 gene expression, we demonstrate that Nodal promotes expansion of breast cancer cells, likely via a combinatorial mechanism involving increased proliferation and decreased apopotosis. In an experimental model of metastasis using beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII (MPSVII) mice, we show that although Nodal is not required for the formation of small (<100 cells) micrometastases at secondary sites, it supports an elevated proliferation:apoptosis ratio (Ki67:TUNEL) in micrometastatic lesions. Indeed, at longer time points (8 weeks), we determined that Nodal is necessary for the subsequent development of macrometastatic lesions. Our findings demonstrate that Nodal supports tumour growth at primary and secondary sites by increasing the ratio of proliferation:apoptosis in breast cancer cells. As Nodal expression is relatively limited to embryonic systems and cancer, this study establishes Nodal as a potential tumour-specific target for the treatment of breast cancer.  相似文献   

5.
6.
The increase in local oestrogen production seen in oestrogen receptor positive (ER+) breast cancers is driven by increased activity of the aromatase enzyme. CYP19A1, the encoding gene for aromatase, is often overexpressed in the oestrogen-producing cells of the breast adipose fibroblasts (BAFs) surrounding an ER+ tumour, and the molecular processes underlying this upregulation is important in the development of breast-specific aromatase inhibitors for breast cancer therapy. Prostaglandin E2 (PGE2), a factor secreted by tumours, is known to stimulate CYP19A1 expression in human BAFs. The hormonal regulation of this process has been examined; however, what is less well understood is the emerging role of epigenetic mechanisms and how they modulate PGE2 signalling. This present study characterises the epigenetic processes underlying expression of the prostanoid receptor EP2 in the context of ER+ breast cancer. Sodium bisulphite sequencing of CpG methylation within the promoter region of EP2 revealed that an inverse correlation existed between methylation levels and relative EP2 expression in breast cancer cell lines MDA-MB-231, MCF7 and MCF10A but not in HS578t and T47D. Inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5aza) and histone deacetylation with Trichostatin A (TSA) resulted in upregulation of EP2 mRNA in all cell lines with varying influences of each epigenetic process observed. Expression of EP2 was detected in human BAFs despite a natively methylated promoter, and this expression was further increased upon 5aza treatment. An examination of 3 triple negative, 3 ductal carcinoma in situ and 3 invasive ductal carcinoma samples revealed that there was no change in EP2 promoter methylation status between normal and cancer associated stroma, despite observed differences in relative mRNA levels. Although EP2 methylation status is inversely correlated to expression levels in established breast cancer cell lines, we could not identify that such a correlation existed in tumour-associated stroma cells.  相似文献   

7.
8.
Prolonged exposure to estrogens is a significant risk factor for the development of breast cancer. Estrogens exert carcinogenic effects by stimulating cell proliferation or through oxidative metabolism that forms DNA-damaging species. In the present study, we aimed to provide a better understanding of estrogen metabolism and actions in breast cancer, and to characterize model breast cancer cell lines. We determined the expression profiles of the genes for the estrogen and progesterone receptors, and for 18 estrogen-metabolizing enzymes in eight cell lines: MCF-7, MCF-10A, T47D, SKBR3, MDA-MB-231, MDA-MB-361, Hs-578T and Hs-578Bst cells. Similar gene expression profiles of these receptors and enzymes for the formation of estradiol via the aromatase and sulfatase pathways were observed in the MCF-7 and T47D metastatic cell lines. The MDA-MB-361 cells expressed ESR1, ESR2 and PGR as well, but differed in expression of the estrogen-metabolizing enzymes. In the MDA-MB-231 and SKBR3 cells, all of these estrogen-forming enzymes were expressed, although the lack of ESR1 and the low levels of ESR2 expression suggested that the estrogens can only act via non-ER mediated pathways. In the non-tumorigenic MCF-10A cell line, the key enzymes of the aromatase pathway were not expressed, and the sulfatase pathway also had a marginal role. The comparison between gene expression profiles of the non-tumorigenic Hs-578Bst cells and the cancerous Hs-578T cells revealed that they can both form estrogens via the sulfatase pathway, while the aromatase pathway is less important in the Hs-578Bst cells. The Hs-578T cells showed low levels of ESR1, ESR2 and PGR expression, while only ESR1 and ESR2 expression was detected in the Hs-578Bst cells. Our data show that the cell lines examined provide the full range of model systems and should further be compared with the expression profiles of breast cancer specimens.  相似文献   

9.
10.
Although cisplatin derivatives are first line chemotherapeutic agents for the treatment of ovarian epithelial cancer, chemoresistance is a major therapeutic problem. Although the cytotoxic effect of these agents are believed to be mediated through the induction of apoptosis, the role of the Fas/FasL system in chemoresistance in human ovarian epithelial cancer is not fully understood. In the present study, we have used cultures of established cell lines of cisplatin-sensitive human ovarian epithelial tumours (OV2008 and A2780-s) and their resistant variants (C13* and A2780-cp, respectively) to assess the role ofFas/FasL system in the chemo-responsiveness of ovarian cancer cells to cisplatin. Cisplatin was effective in inducing the expression of cell-associated Fas and FasL, soluble FasL and apoptosis in concentration and time-dependent fashion in both cisplatin-sensitive cell lines (OV2008 and A2780-s). In contrast, while cisplatin was effective in increasing cell-associated Fas protein content in C13*, it failed to up-regulate FasL (cell-associated and soluble forms) and induce apoptosis, irrespective of concentration and duration of cisplatin treatment. Concentrated spent media from OV2008 cultures after cisplatin treatment were effective in inducing apoptosis in C13* cells which was partly inhibited by the antagonistic Fas monoclonal antibody (mAb) suggesting that the soluble FasL present in the spent media was biologically active. In the resistant A2780-cp cells, neither Fas nor FasL up-regulation were evident in the presence of the chemotherapeutic agent and apoptosis remained low compared to its sensitive counterpart. Activation of the Fas signalling pathway, by addition to the cultures an agonistic Fas mAb, was equally effective in inducing apoptosis in the cisplatin-sensitive (OV2008) and -resistant variant C13*, although these responses were of lower magnitude compared to that observed with cisplatin in the chemosensitive cells. A significant interaction between cisplatin and agonistic Fas mAb was observed in the apoptotic response in OV2008 and C13* when cultured in the presence of both agents. Immunohistochemistry of human ovarian epithelial carcinomas reveals the presence of Fas in low abundance in proliferatively active cells but in high levels in quiescent ones. Although the expression pattern of FasL in the tumour was similar to that of Fas, the protein content was considerably lower. Taken together, these data suggest that the dysregulation of the Fas/FasL system may be an important determinant in cisplatin resistance in ovarian epithelial cancer cells. Our results are also supportive of the notion that combined immuno- and chemo-therapy (i.e., agonistic Fas mAb plus cisplatin) may provide added benefits in the treatment of both chemo-sensitive and -resistant ovarian tumours.  相似文献   

11.
A dramatic reduction in the expression of a novel phospholipid hydroperoxide glutathione peroxidase (PHGPx), which incorporates cysteine instead of selenocysteine in the conserved catalytic motif was observed in a microarray analysis using cDNAs amplified from mRNA of Brca1-null mouse embryonic fibroblasts. This non-selenocysteine PHGPx named NPGPx is a cytoplasmic protein with molecular mass of approximately 22 kDa and has little detectable glutathione peroxidase activity in vitro. Ectopic expression of NPGPx in Brca1-null cells that were sensitive to oxidative stress induced by hydrogen peroxide conferred a similar resistance level to that of the wild-type cells, suggesting the importance of this protein in reducing oxidative stress. Expression of NPGPx was found in many tissues, including developing mammary gland. However, the majority of breast cancer cell lines studied (11 of 12) expressed very low or undetectable levels of NPGPx irrespective of BRCA1 status. Re-expression of NPGPx in breast cancer lines, MCF-7 and HCC1937, which have very little or no endogenous NPGPx, induced resistance to eicosapentaenoic acid (an omega-3 type of polyunsaturated fatty acid)-mediated cell death. Conversely, inhibition of the expression of NPGPx by the specific small interfering RNA in HS578T breast cancer cells that originally express substantial amounts of endogenous NPGPx increased their sensitivity to eicosapentaenoic acid-mediated cell death. Thus, NPGPx plays an essential role in breast cancer cells in alleviating oxidative stress generated from polyunsaturated fatty acid metabolism.  相似文献   

12.
Breast cancer is a leading cause of mortality in the Western world. It is well established that the spread of breast cancer, first locally and later distally, is a major factor in patient prognosis. Experimental systems of breast cancer rely on cell lines usually derived from primary tumours or pleural effusions. Two major obstacles hinder this research: (i) some known sub-types of breast cancers (notably poor prognosis luminal B tumours) are not represented within current line collections; (ii) the influence of the tumour microenvironment is not usually taken into account.We demonstrate a technique to culture primary breast cancer specimens of all sub-types. This is achieved by using three-dimensional (3D) culture system in which small pieces of tumour are embedded in soft rat collagen I cushions. Within 2-3 weeks, the tumour cells spread into the collagen and form various structures similar to those observed in human tumours1. Viable adipocytes, epithelial cells and fibroblasts within the original core were evident on histology. Malignant epithelial cells with squamoid morphology were demonstrated invading into the surrounding collagen. Nuclear pleomorphism was evident within these cells, along with mitotic figures and apoptotic bodies.We have employed Optical Projection Tomography (OPT), a 3D imaging technology, in order to quantify the extent of tumour spread in culture. We have used OPT to measure the bulk volume of the tumour culture, a parameter routinely measured during the neo-adjuvant treatment of breast cancer patients to assess response to drug therapy. Here, we present an opportunity to culture human breast tumours without sub-type bias and quantify the spread of those ex vivo. This method could be used in the future to quantify drug sensitivity in original tumour. This may provide a more predictive model than currently used cell lines.  相似文献   

13.
Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI50) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.  相似文献   

14.
This study was to investigate the role of Fas in the development of Cisplatin-resistant ovarian cancer. On the cellular level, Fas expression was significantly reduced in Cisplatin resistant A2780 (A2780/CP) cells compared with A2780 cells. Fas silence with siRNA would promote tumor cell lines proliferation, facilitate tumor cell cycle transition of G1/S, prevent cell apoptosis, and promote cell migration. Expression of drug resistance gene was negatively correlated to Fas. In nude mice metastasis model of human ovarian carcinoma by subcutaneous transplantation, after Ad-Fas injected intratumorly, we found that upregulation of Fas could inhibit transplantation tumor tissue growth and reduce the expression of drug resistance gene. Our results indicated that upregulation of Fas in epithelial ovarian cancer reversed the development of resistance to Cisplatin. In conclusion, our findings suggested that Fas might act as a promising therapeutic target for improvement of the sensibility to Cisplatin in ovarian cancer. [BMB Reports 2015; 48(1): 30-35]  相似文献   

15.
目的探讨microRNA-205表达与乳腺恶性病变的关系。方法乳腺疾病及癌组织芯片原位杂交分析microRNA-205的表达;实时定量RT-PCR方法检测正常乳腺细胞株、恶性程度不同的乳腺癌细胞株中microRNA-205的表达。结果原位杂交分析显示,36例正常与良性乳腺病变中,33例(91.67%)表达阳性;36例乳腺癌中,23例(63.89%)表达阳性。microRNA-205的表达在乳腺正常与良性病变中的表达较恶性病变中高且有统计学差异(P=0.011),但与乳腺癌TNM分期、临床分期无关(P0.05)。实时定量RT-PCR结果显示,四个高度恶性乳腺癌细胞株(MDA-MB-231、HS578T、BT549和SUM159PT)中microRNA-205的表达较永生化正常乳腺上皮细胞株MCF10A和四个低度恶性细胞株(MDA-MB-468、T-47D、ZR-75-1和SKBR3)中为低(P0.05)。结论原位杂交适用于microRNA-205的表达分析;组织芯片标本原位杂交与乳腺细胞株实时定量RT-PCR分析结果提示,microRNA-205可能参与了乳腺癌的发生、发展,并随着乳腺癌的演进呈下调趋势。  相似文献   

16.
The plasma membrane Ca2+ ATPase (PMCA) is an important regulator of free intracellular calcium, with dynamic regulation in the rat mammary gland during lactation. Recent studies suggest that Ca2+ plays a role in cellular proliferation. To determine if PMCA expression is altered in tumorigenesis, we compared relative levels of PMCA1 mRNA. We found that the relative expression of PMCA1 mRNA is increased, by approximately 270% and 170%, in MCF-7 and MDA-MB-231 human breast cancer cell lines deprived of serum for 72 h, respectively, compared to the similarly treated MCF-10A human mammary gland epithelial cell line. Characterization of PMCA mRNA isoforms revealed that PMCA1b and PMCA4 mRNA are expressed in MCF-7, MDA-MB-231, SK-BR-3, ZR-75-1 and BT-483 breast cancer cell lines. We also detected PMCA2 mRNA expression in all the breast cancer cell lines examined. However, PMCA3 mRNA was only detected in BT-483 cells. Our results suggest that PMCA expression may be altered in breast cancer cell lines, suggesting altered Ca2+ regulation in these cell lines. Our results also indicate that breast cancer cell lines can express mRNAs for a variety PMCA isoforms.  相似文献   

17.
Recent evidence suggests an intriguing link between p53 and the Fas pathway. To evaluate this association further, we utilized a recombinant adenoviral vector (AdWTp53) to overexpress wild-type p53 in lung cancer (A549, H23, EKVX and HOP92) and breast cancer (MDA-MB-231 and MCF-7) cell lines and observed an increase in the Fas/CD95/APO-1 protein levels. Furthermore, this increase correlated with the sensitivity of the cell lines to p53-mediated cytotoxicity. To examine the effects of Fas over-expression in cells resistant to p53 over-expression, we constructed AdFas, an adenoviral vector capable of transferring functional human Fas to cancer cells. Interestingly, infection of p53-resistant MCF-7 cells with AdFas sensitized them to p53-mediated apoptosis. These studies indicate that combined over-expression of Fas and wild-type p53 may be an effective cancer gene therapy approach, especially in cells relatively resistant to p53 over-expression.  相似文献   

18.
Dickkopf‐related protein 3 (DKK3) is an antagonist of Wnt ligand activity. Reduced DKK3 expression has been reported in various types of cancers, but its functions and related molecular mechanisms in breast tumorigenesis remain unclear. We examined the expression and promoter methylation of DKK3 in 10 breast cancer cell lines, 96 primary breast tumours, 43 paired surgical margin tissues and 16 normal breast tissues. DKK3 was frequently silenced in breast cell lines (5/10) by promoter methylation, compared with human normal mammary epithelial cells and tissues. DKK3 methylation was detected in 78% of breast tumour samples, whereas only rarely methylated in normal breast and surgical margin tissues, suggesting tumour‐specific methylation of DKK3 in breast cancer. Ectopic expression of DKK3 suppressed cell colony formation through inducing G0/G1 cell cycle arrest and apoptosis of breast tumour cells. DKK3 also induced changes of cell morphology, and inhibited breast tumour cell migration through reversing epithelial‐mesenchymal transition (EMT) and down‐regulating stem cell markers. DKK3 inhibited canonical Wnt/β‐catenin signalling through mediating β‐catenin translocation from nucleus to cytoplasm and membrane, along with reduced active‐β‐catenin, further activating non‐canonical JNK signalling. Thus, our findings demonstrate that DKK3 could function as a tumour suppressor through inducing apoptosis and regulating Wnt signalling during breast tumorigenesis.  相似文献   

19.
Breast cancer has a diverse aetiology characterized by the heterogeneous expression of hormone receptors and signalling molecules, resulting in varied sensitivity to chemotherapy. The adverse side effects of chemotherapy coupled with the development of drug resistance have prompted the exploration of natural products to combat cancer. Lactoferricin B (LfcinB) is a natural peptide derived from bovine lactoferrin that exhibits anticancer properties. LfcinB was evaluated in vitro for its inhibitory effects on cell lines representing different categories of breast cancer and in vivo for its suppressive effects on tumour xenografts in NOD-SCID mice. The different breast cancer cell lines exhibited varied levels of sensitivity to apoptosis induced by LfcinB in the order of SKBR3>MDA-MB-231>MDA-MB-468>MCF7, while the normal breast epithelial cells MCF-10A were not sensitive to LfcinB. The peptide also inhibited the invasion of the MDA-MB-231 and MDA-MB-468 cell lines. In the mouse xenograft model, intratumoural injections of LfcinB significantly reduced tumour growth rate and tumour size, as depicted by live imaging of the mice using in vivo imaging systems (IVIS). Harvested tumour volume and weight were significantly reduced by LfcinB treatment. LfcinB, therefore, is a promising and safe candidate that can be considered for the treatment of breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号