首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was focused on fatty acid (FA) composition of lipids from the seedlings and roots of crops having different cold resistance and grown at 27°C or 4°C. Biosynthesis of FA in the lipids of seedlings and roots of cold-susceptible maize (Zea mays L.) at both growth temperatures was controlled by chloroplast ω6 desaturase and microsomal ω6 desaturase, respectively. The content of linoleic acid was 56.2% and 43.3% in the coleoptiles of maize seedlings grown at 4 and 27°C, respectively, and in the roots it was 52.2% and 38.5%, respectively. The content of α-linolenoic acid in the coleoptiles was 6.7–6.8% at both temperatures, while in the root lipids it was higher at low temperature (3.15% at 27°C vs. 4.7% at 4°C). FA biosynthesis in the seedling coleoptiles of wheat (Triticum aestivum L.) and Siberian wild rye (Elymus sibiricus L.) grown at low temperature was controlled by the chloroplast ω3 desaturase. A minor increase in the content of α-linolenoic acid was observed at low temperature: 29.7% to 30.2% in wheat and 22.8% to 25.8% in wild rye. In the root tissues of these species, the biosynthesis of α-linolenoic acid was controlled by the microsomal ω3 desaturase. The content of α-linolenoic acid was higher at low temperature: in wheat it was 6.1% at 27°C and 17.1%, and 4°C, while in Siberian wild rye, 7.1% and 12.0% at 4 and 27°C, respectively.  相似文献   

2.
《Process Biochemistry》2010,45(2):187-195
Salmon oil (Salmo salar) rich in long-chain polyunsaturated fatty acids was submitted to various oxidative stresses (temperature, atmosphere, presence of natural antioxidant or pro-oxidant). Oxidative kinetics of oil formulations and nanoemulsions prepared by high-pressure homogenization (1700 bars) were carried out by using conjugated dienes and infrared spectroscopy measurements. Droplet size nanoemulsion and polyene index were calculated from the fatty acid composition of oils, and the lipid fraction of emulsions were followed up over a period of 40 days.The particle size of different nanoemulsions was about 160–207 nm. The oxidative stability of salmon lecithin was higher than that of other oil samples in spite of its high LC-PUFA concentration. Crude salmon oil was better protected by its natural antioxidants (tocopherols and astaxanthin). In this study, a high concentration of α-tocopherol (0.2%) was used for its pro-oxidant role. The addition of quercetin improves slightly the oxidative stability of oils. However, no effect of this antioxidant was observed in emulsion, due to its insolubility in water and lipid phases.  相似文献   

3.
Vegetable oils extracted from oilseeds are an important component of foods, but are also used in a range of high value oleochemical applications. Despite being biodegradable, nontoxic and renewable current plant oils suffer from the presence of residual polyunsaturated fatty acids that are prone to free radical formation that limit their oxidative stability, and consequently shelf life and functionality. Many decades of plant breeding have been successful in raising the oleic content to ~90%, but have come at the expense of overall field performance, including poor yields. Here, we engineer superhigh oleic (SHO) safflower producing a seed oil with 93% oleic generated from seed produced in multisite field trials spanning five generations. SHO safflower oil is the result of seed‐specific hairpin‐based RNA interference of two safflower lipid biosynthetic genes, FAD2.2 and FATB, producing seed oil containing less than 1.5% polyunsaturates and only 4% saturates but with no impact on lipid profiles of leaves and roots. Transgenic SHO events were compared to non‐GM safflower in multisite trial plots with a wide range of growing season conditions, which showed no evidence of impact on seed yield. The oxidative stability of the field‐grown SHO oil produced from various sites was 50 h at 110°C compared to 13 h for conventional ~80% oleic safflower oils. SHO safflower produces a uniquely stable vegetable oil across different field conditions that can provide the scale of production that is required for meeting the global demands for high stability oils in food and the oleochemical industry.  相似文献   

4.
The current study investigated the effect of developmental stages on the chemical composition and the antioxidant activity of fifteen crude oil samples obtained from Pistacia atlantica Desf. leaves, galls, and fruits. Twelve fatty acids were detected by GC/FID, linolenic acid (C18 : 3) was the major fatty acid detected in leaves crude oils that registered [41.73 % (P<0.05)] on the last stage. The best content of tocopherols and carotenoids was recorded at the last stage for leaves and galls oils, respectively, with values of [1.530±0.01, 0.52±0.01 (P<0.05) mg α‐tocopherol equivalent/g DW] and [86.60±0.95, 69.15±0.13 (P<0.05) μg β‐carotene equivalent/g DW]. For fruits oils, the content varied depending on the levels of fruits maturation. The results from DPPH, FRAP, and ABTS assays revealed that the antioxidant activity increased with the increasing content of tocopherols and carotenoids in leaves and galls oils during development stages, and varied for fruits oils depending on the ripening stages. Moreover, according to PCA analysis, the best phytoconstituent content and antioxidant activity were attributed to P. atlantica Desf. fruit's crude oils. Also, a strong relationship was found between the antioxidant activity and bioactive phytochemical components, such as tocopherols, carotenoids, and omega‐three fatty acid, which confirmed that P. atlantica Desf. crude oils present a valuable source of natural antioxidant that could be used for pharmaceutical and food industries purposes.  相似文献   

5.
In transgenic (TG) tomato (Lycopersicon esculentum Mill.) overexpressed ω-3 fatty acid desaturase gene (LeFAD7) was identified, which was controlled by the cauliflower mosaic virus 35S promoter and induced increased contents of unsaturated fatty acids in thylakoid membrane. Under chilling stress at low irradiance (4 °C, 100 μmol m−2 s−1) TG plants with higher linolenic acids (18: 3) content maintained a higher O2 evolution rate, oxidizable P700 content, and maximal photochemical efficiency (Fv/Fm) than wild type (WT) plants. Low temperature treatment for 6 h resulted in extensive changes of chloroplast ultrastructure: in WT plants most chloroplasts became circular, the number of amyloids increased, appressed granum stacks were dissolved, grana disappeared, and the number of grana decreased, while only a few grana were found in leaves of TG plants. Hence the overexpression of LeFAD7 could increase the content of 18: 3 in thylakoid membrane, and this increase alleviated the photoinhibition of photosystem (PS) 1 and PS2 under chilling at low irradiance.  相似文献   

6.
The fatty acid composition of pyruvate-grown Comamonas testosteroni ATCC 17454 was analyzed after growth at 30 and 20°C and after half-maximum growth inhibition caused by different membrane-active chemicals at 30°C. Palmitic acid (16:0), palmitoleic acid (16:1 ω7c) and vaccenic acid (18:1 ω7c) were the dominant fatty acids. At 20°C, the proportion of palmitic acid decreased and those of palmitoleic and vaccenic acid increased. Saturation degree was also lowered when half-maximum growth inhibition was caused by 4-chlorosalicylic acid, 2,4-dichlorophenoxyacetic acid and 2,4-dinitrophenol and, to a lesser extent, in the presence of 2,4-dichlorophenol, phenol and ethanol. It appeared that the dissociated forms of the former group of chemicals were preferentially incorporated near the head group region of the lipid bilayer, thereby somewhat extending the outer region of the membranes, and that the increased amount of bent, unsaturated fatty acids helped to maintain membrane integrity. Irrespective of how the decrease of the saturation degree was triggered, it caused electron transport phosphorylation (adenosine triphosphate synthesis driven by n-hexanol oxidation) to become more sensitive to uncoupling. Apparently, the viscosity and phase stability of the cytoplasmic membrane of C. testosteroni were maintained at the price of a reduced protection against energy toxicity.  相似文献   

7.
Biodiesels are alkyl esters produced by transesterification of higher fatty acids (aliphatic chains composed of 14 to 22 carbon units) from animal fats and/or vegetable oils. The cold filter plugging points (CFPP) of biodiesels are not only higher than that of petro-diesel, but they also differ from the melting point of the raw (unesterified) materials. In this study, we empirically derived equations that estimated the CFPP of a biodiesel based on its fatty acid content, using various biodiesel blends containing four methyl esters with different fatty acid compositions: soybean (SME), palm (PME), rapeseed (RME), and lard (LME). These blending ratio experiments yielded three equations that described the correlation between CFPP and fatty acid content: Y (CFPP, °C) = −3.1X (blending ratio) − 12.7 (PME/SME); Y = 2.2X − 10.7 (LME/SME); and Y = −4.0X − 13.0 (PME/RME). We also obtained the correlation between CFPP and total saturated fatty acid methyl ester content in the biodiesels: Y (CFPP, °C) = 0.449X (total saturated fatty acid methyl ester content, wt%) − 9.198. These empirical equations accurately predicted CFPP values of biodiesel compounds with known fatty acid compositions, facilitating the use of diverse biodiesels in industrial fields. The first two authors equally contributed to this work.  相似文献   

8.
In order to investigate the influence of fatty acid pattern and antioxidants other than vitamin E on lipid peroxidation and antioxidant levels of plasma very low density and low density lipoproteins (VLDL + LDL), the effects of three diets (equalized for vitamin E) containing soybean oil, olive oil, or an oleate-rich mixture of triglycerides (triolein) were studied in rats. A significantly lower concentration of thiobarbituric acid-reactive substances (TBA-RS) in plasma and lipoproteins was found after the olive oil diet (soybean oil, 3.7 +/- 0.4 nmol/ml; triolein, 2.1 +/- 0.5 nmol/ml; olive oil, 1.5 +/- 0.3 nmol/ml, in plasma) (soybean oil, 0.99 +/- 0.16 nmol/ml; triolein, 0.96 +/- 0.13 nmol/ml; olive oil, 0.38 +/- 0.12 nmol/ml, in the VLDL + LDL fraction). Furthermore, the results from in vitro copper-induced lipid peroxidation, expressed in terms of conjugated dienes, lipid hydroperoxides, and TBA-RS content, showed that VLDL + LDL particles from olive olive oil-fed rats were remarkably resistant to oxidative modification. The results suggest that the fatty acid unsaturation of dietary oils is not the only determining factor of the antioxidant capacity of lipoproteins in this animal model. The maximal protection observed after the olive oil diet may be explained by the presence of other unidentified antioxidants in addition to vitamin E, derived from oil intake. Therefore, the optimal balance between the content of unsaturated fatty acids and natural antioxidants in dietary oils appears to be of major importance.  相似文献   

9.
Lipid oxidation products (LOPs), generated in culinary oils during episodes of thermal stressing can give rise to cellular damage. The aims of this study were to determine whether orally-administered, LOP-containing thermally-stressed safflower oil exerts teratogenic actions in rats, and whether this effect could be prevented by co-administration of &#102 -tocopherol ( &#102 -TOH). Safflower oil was heated for a period of 20 min according to standard frying practices and stored at &#109 20°C under N 2 . Four experimental groups of pregnant Wistar rats were employed; two received 0.30 ml of pre-heated oil (HO), one of which was also supplemented with 150 mg of &#102 -TOH (HOE), and two served as controls, one treated with the non-heated oil (O) and the other without any treatment (C). The oil was administered daily by gavage from day 1 of pregnancy to day 11.5, when the animals were killed and the embryos examined. LOPs and &#102 -TOH were determined both in the heated and non-heated oils. The percentage of embryo malformations and reabsorptions were determined in the above four experimental groups. Heating the oil substantially increased its concentration of LOPs and decreased its &#102 -TOH content. The percentage of embryo malformations in the HO group was 21.73%, compared with 5.6 and 7% in the O and C groups, respectively. Supplementation of the pre-heated oil with &#102 -TOH was found to decrease the percentage of malformations to 7%. The results obtained from these investigations indicate that LOPs detectable at millimolar levels in the heated cooking oils administered (e.g. saturated and &#102, &#103 -unsaturated aldehydes, and/or their conjugated hydroperoxydiene precursors) exert potent teratogenic actions in experimental animals which are at least partially circumventable by co-administration of the chain-breaking antioxidant &#102 -TOH. Plausible mechanisms for these processes and their health relevance to humans regarding diet and methods of frying/cooking are discussed.  相似文献   

10.
Three seeds of Turkish origin, flax, poppy and safflower were analyzed for their proximate, fatty acids, tocols (tocopherols and tocotrienols) and total phenolic composition, and oxidative stability of their oil. The major fatty acid in the flax oil was alpha-linolenic acid, comprising 58.3% of total fatty acids, whereas poppy and safflower oils were rich in linoleic acid at 74.5% and 70.5% level, respectively. The amount of total tocols was 14.6 mg/100g flax, 11.0mg/100g poppy and 12.1mg/100g safflower seed. Flax and poppy oil were rich in gamma-tocopherol as 79.4 mg/100g oil and 30.9 mg/100g oil, respectively, while alpha-tocopherol (44.1g/100g oil) was dominant in safflower oil. Only alpha- and gamma-tocotrienol were found in the oils. Oxidative stability of oils was measured at 110 degrees C at the rate of 20 L/h air flow rate, and poppy oil (5.56 h) was most stabile oil followed by safflower oil (2.87 h) and flax oil (1.57). There were no correlation between oxidative stability and unsaturation degree of fatty acids and tocol levels of the oils. All of the seeds investigated provide a healthy oil profile and may have potential as a source of specialty oils on a commercial scale.  相似文献   

11.
Caffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC50 (14–23 µM) compared to CA, dibutyl hydroxy toluene (BHT) and Vitamin C (24–51 µM), and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2) with inhibition ratio of 71.4–78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53%) at high temperatures. Overall, the alkyl caffeats with short chain length (n<5) assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates.  相似文献   

12.
The taxonomic position of strain DFH11T, which was isolated from coastal seawater off Qingdao, People’s Republic of China in 2007, was determined. Strain DFH11T comprised Gram-negative, motile, strictly aerobic spirilli that did not produce catalase. Comparative 16S rRNA gene sequence analysis revealed that strain DFH11T shared ~97.2, 93.3, 91.8, 91.7 and 91.5% sequence similarities with Oleispira antarctica, Spongiispira norvegica, Bermanella marisrubri, Oceaniserpentilla haliotis and Reinekea aestuarii, respectively. DNA–DNA hybridization experiments indicated that the strain was distinct from its closest phylogenetic neighbour, O. antarctica. The strain grew optimally in 2–3% (w/v) NaCl, at pH 5.0–10.0 (optimally at pH 7.0) and between 0 and 30°C (optimum growth temperature 28°C). The strain exhibited a restricted substrate profile, with a preference for aliphatic hydrocarbons, that is consistent with its closest phylogenetic neighbour O. antarctica. Growth of the isolate at different temperatures affected the cellular fatty acid profile. 28°C cultured cells contained C16:1ω7c and/or iso-C15:0 2-OH (50.4%) and C16:0 (19.2%) as the major fatty acids. However, the major fatty acids of the cells cultured at 4°C were C16:1ω7c and/or C16:1ω6c (40.2%), C16:0 (17.2%) and C17:1ω8c (10.1%). The G+C content of the genomic DNA was 42.7 mol%. Phylogeny based on 16S rRNA gene sequences together with data from DNA–DNA hybridization, phenotypic and chemotaxonomic characterization revealed that DFH11T should be classified as a novel species of the genus Oleispira, for which the name Oleispira lenta sp. nov. is proposed, with the type strain DFH11T (=NCIMB 14529T = LMG 24829T).  相似文献   

13.
1. Mixtures of microencapsulated lipids and Scenedesmus quadricauda grown at different degrees of P limitation were used as food for Daphnia galeata in two growth experiments. Thereby, food quality in terms of ω3-fatty acid (ω3-FA) or phosphorus (P) content could be assessed without interference from other factors.
2. ω3-highly unsaturated fatty acids (ω3-HUFA), given to Daphnia as fish oil or eicosapentaenoic acid (EPA) together with non P-limited algae, decreased the time to first reproduction. When fed fish oil, somatic growth and survival were also enhanced. Linolenic acid also decreased the time to first reproduction but to a lesser extent than EPA.
3. Food quality depended to a large extent on the degree of P limitation of Scenedesmus , which is consistent with P limitation of Daphnia. The overall impact of P was always larger than the effect of ω3-FA. Growth, survival and reproduction were elevated when Daphnia were fed non P-limited Scenedesmus compared to treatments with P-limited algae.
4. The relative importance of ω3-HUFA and P content in the food changed over a C : P gradient, with stronger effects of ω3-HUFA at low C : P ratios.  相似文献   

14.
The levels of cyanogenic glucosides (linamarin and lotaustralin) and the activity of linamarase were studied in 5-day old seedlings of oil flax (Linum usitatissimum L., cv. LCSD 200) under different environmental conditions. White light enhanced the cyanoglucosides content, and this effect depended on its intensity and the time of exposure. The level of cyanoglucosides rose with temperature, and it reached the highest level at the highest temperature (30 °C). Linamarase (EC. 3.2.1.21) activity was the highest at 20°C, especially in light-grown seedlings. Lower enzyme activity at the extreme temperature (15 and 30 °C) was observed. Water stress (low water potential, ω=−0.34 MPa) reduced by more than twice the cyanoglucoside level and linamarase activity. The possible protective, or/and regulatory roles of cyanogenic glucosides was discussed.  相似文献   

15.
Since Saccharomyces cerevisiae contains Δ9 fatty acid desaturase (OLE1) as a sole fatty acid desaturase, it produces saturated and monounsaturated fatty acids of 16- and 18-carbon compounds. We showed earlier that Kluyveromyces lactis Δ12 (KlFAD2) and ω3 (KlFAD3) fatty acid desaturase genes enabled S. cerevisiae to make also polyunsaturated fatty acids (PUFAs), linoleic (18:2n-6), and α-linolenic (18:3n-3) acids. Unlike Δ9 fatty acid desaturase Ole1p, the two added fatty acid desaturases (KlFAD2and KlFAD3) do not contain a cytochrome b5 domain, and we now report on effects of the overexpression of K. lactis and S. cerevisiae cytochrome b5 (CYB5) genes as well as temperature effects on PUFA synthesis. Without extra cytochrome b5, while PUFA synthesis is significant at low temperature (20 °C), it was marginal at 30 °C. Overexpression of cytochrome b5 at 20 °C did not affect the fatty acid synthesis so much, but it significantly enhanced the synthesis of PUFA at 30 °C.  相似文献   

16.
The growth, lipid content, and fatty acid composition of Aurantiochytrium sp. strain mh0186 at different temperatures were investigated. Strain mh0186 grew well at 15–30°C, but weakly at 10°C. The biomass at 15–30°C was significantly higher than at 10 and 35°C, and the total lipid at 15–35°C was significantly higher than that at 10°C. The amount of DHA in the total fatty acid was highest at 10°C and decreased in response to temperature increase. The content of DHA (mg/g-dry cell weight) at 15–30°C were significantly higher than those at 35°C and those at 15–25°C were significantly higher than those at 10 and 35°C. The DHA yield at 15–35°C was significantly higher than those at 10 and 35°C. Unsaturation of fatty acid was regulated by temperature and was enhanced in response to temperature decrease. The ratio of DHA to DPA varied at different temperatures.  相似文献   

17.
Heterotrophic growth of thraustochytrids has potential in co-producing a feedstock for biodiesel and long-chain (LC, ≥C20) omega-3 oils. Biodiscovery of thraustochytrids from Tasmania (temperate) and Queensland (tropical), Australia, covered a biogeographic range of habitats including fresh, brackish, and marine waters. A total of 36 thraustochytrid strains were isolated and separated into eight chemotaxonomic groups (A–H) based on fatty acid (FA) and sterol composition which clustered closely with four different genera obtained by 18S rDNA molecular identification. Differences in the relative proportions (%FA) of long-chain C20, C22, omega-3, and omega-6 polyunsaturated fatty acids (PUFA), including docosahexaenoic acid (DHA), docosapentaenoic acid, arachidonic acid, eicosapentaenoic acid (EPA), and saturated FA, as well as the presence of odd-chain PUFA (OC-PUFA) were the major factors influencing the separation of these groups. OC-PUFA were detected in temperate strains of groups A, B, and C (Schizochytrium and Thraustochytrium). Group D (Ulkenia) had high omega-3 LC-PUFA (53% total fatty acids (TFA)) and EPA up to 11.2% TFA. Strains from groups E and F (Aurantiochytrium) contained DHA levels of 50–61% TFA after 7 days of growth in basal medium at 20 °C. Groups G and H (Aurantiochytrium) strains had high levels of 15:0 (20–30% TFA) and the sum of saturated FA was in the range of 32–51%. β,β-Carotene, canthaxanthin, and astaxanthin were identified in selected strains. Phylogenetic and chemotaxonomic groupings demonstrated similar patterns for the majority of strains. Our results demonstrate the potential of these new Australian thraustochytrids for the production of biodiesel in addition to omega-3 LC-PUFA-rich oils.  相似文献   

18.
Oils and fats are the most important renewable raw materials of the chemical industry. They make available fatty acids in such purity that they may be used for chemical conversions and for the synthesis of chemically pure compounds. Oleic acid (1) from “new sunflower,” linoleic acid (2) from soybean, linolenic acid (3) from linseed, erucic acid (4) from rape seed, and ricinoleic acid (5) from castor oil are most important for chemical transformations offering in addition to the carboxy group one or more C-C-double bonds. New plant oils containing fatty acids with new and interesting functionalities such as petroselinic acid (6) from Coriandrum sativum, calendic acid (7) from Calendula officinalis, α-eleostearic acid (8) from tung oil, santalbic acid (9) from Santalum album (Linn.), and vernolic acid (10) from Vernonia galamensis are becoming industrially available. The basic oleochemicals are free fatty acids, methyl esters, fatty alcohols, and fatty amines as well as glycerol as a by-product. Their interesting new industrial applications are the usage as environmentally friendly industrial fluids and lubricants, insulating fluid for electric utilities such as transformers and additive to asphalt. Modern methods of synthetic organic chemistry including enzymatic and microbial transformations were applied extensively to fatty compounds for the selective functionalization of the alkyl chain. Syntheses of long-chain diacids, ω-hydroxy fatty acids, and ω-unsaturated fatty acids as base chemicals derived from vegetable oils were developed. Interesting applications were opened by the epoxidation of C-C-double bonds giving the possibility of photochemically initiated cationic curing and access to polyetherpolyols. Enantiomerically pure fatty acids as part of the chiral pool of nature can be used for the synthesis of nonracemic building blocks.  相似文献   

19.
The present study deals with the production of structured lipid containing omega-3 and omega-6 fatty acids in the ratio of 1:1 by incorporating omega-3 fatty acids (α-linolenic acid) from linseed oil into groundnut oil using lipase (Lipozyme IM from Rhizomucor miehei) catalyzed acidolysis reaction in hexane. The reaction conditions were optimized by response surface methodology with a four-variable five-level central composite rotatable experimental design. The influence of four independent parameters, namely ratio of fatty acid concentrate from linseed to groundnut oil (0.66–1.98, w/w), reaction temperature (30–60 °C), enzyme concentration (1–5%) and reaction time (2–54 h) on omega-3 fatty acids incorporation into groundnut oil were optimized. Optimal conditions for the structured lipid containing omega-3 to omega-6 fatty acids in the ratio of 1:1 were determined to be; enzyme concentration 3.75% (w/w), temperature 37.5 °C, incubation time 30.81 h and ratio of free fatty acid concentrate from linseed oil to groundnut oil 1.16 (w/w).  相似文献   

20.
The purpose of this study was to develop a lyotropic liquid crystalline formulation using the emulsifier vitamin E TPGS and evaluate its behavior after incorporation of a flavonoid, quercetin. The physical (macro and microscopic), chemical (determination of quercetin content by the HPLC method) and functional (determination of quercetin antioxidant activity by DPPH assay) stability of the lamellar liquid crystalline formulation containing flavonoid was evaluated when stored at 4 ± 2 °C; 30 ± 2 °C/70 ± 5% RH (relative humidity) and 40 ± 2 °C/70 ± 5% RH during 12 months. The lamellar liquid crystalline structure of the formulation was maintained during the experiment, however chemical and functional stability results showed a great influence of the storage period in all conditions tested. A significant decrease in quercetin content (approximately 40%) was detected during the first month of storage and a similar significant loss in antioxidant activity was detected after 6 months. The remaining flavonoid content was unchanged during the final 6 months of the experimental period. The results suggest possible interactions between quercetin and the liquid crystalline formulation, which could inhibit or reduce the quercetin activity incorporated in the system. In conclusion, the present study demonstrated that incorporation of quercetin (1%) did not affect the liquid crystalline structure composed of vitamin E TPGS/IPM/PG–H2O (1:1) at 63.75/21.25/15 (w/w/w). Nevertheless, of the total quercetin incorporated in the system only 60% was free to act as an antioxidant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号