首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
TNFAIP1 is a protein which can be induced by tumor necrosis factorα (TNFα) and interleukin-6 (IL-6), it may play roles in DNA synthesis, DNA repair, cell apoptosis and human diseases. However, very little has been known about how TNFAIP1 acts in these physiological processes. In this paper, CK2β was identified as a partner of TNFAIP1 by screening the HeLa cDNA library in yeast two-hybrid system with TNFAIP1 as a bait. Furthermore, it was demonstrated that CK2 could phosphorylate TNFAIP1 in vitro and in vivo, which facilitated the distribution of TNFAIP1 in nucleus and enhanced its interaction with PCNA. It is suggested that the phosphorylation of TNFAIP1 may be required for its functions.  相似文献   

5.
6.
7.
8.
9.
10.
Tumor necrosis factor-α-inducible protein 8 (TNFAIP8) family are very recently identified proteins which share considerable sequence homology to regulate cellular and immune homeostasis. However, it is unknown whether TNFAIP8 family is expressed in the kidney and contributes to the regulation of renal functions. Therefore, the present study was designed to characterize the members of TNFAIP8 family in the kidney and to explore their possible roles in the development and progression of diabetic nephropathy. By RT-PCR and Western blot analyses, we found that all members of TNFAIP8 family were detected in the kidney. TNFAIP8 and TIPE2 expression was significantly increased in glomeruli from streptozotocin (STZ)-induced diabetic rats, and this upregulation was further confirmed in renal biopsies of diabetic patients. In in vitro study, TNFAIP8 was upregulated in response to high glucose in mesangial cells rather than podocytes. Moreover, a direct correlation was observed between expression of TNFAIP8 and mesangial cell proliferation and this regulation was associated with NADPH oxidase-mediated signaling pathway. However, we failed to observe the upregulation of TIPE2 in both mesangial cells and podocytes in response to high glucose. In conclusion, the present study addressed the role of TNFAIP8 family in diabetic nephropathy. These findings for the first time demonstrate that TNFAIP8 is one of critical components of a signal transduction pathway that links mesangial cell proliferation to diabetic renal injury.  相似文献   

11.
Tumor necrosis factor, alpha-induced protein 1 (TNFAIP1) is an immediate-early response gene of endothelium induced by TNF alpha. However, little is really known concerning the TNFAIP1 expression regulation. To better understand how TNFAIP1 expression is regulated, we functionally characterized the promoter region of human TNFAIP1 gene. Deletion mutation analysis, gel electrophoretic mobility shift, and site-directed mutagenesis assays allowed the identification of one functional Sp1-binding site within the human TNFAIP1 core promoter region. Moreover, chromatin immunoprecipitation analysis indicated that Sp1 was associated in vivo with the TNFAIP1 promoter. Further, Sp1 overexpression enhanced TNFAIP1 promoter activity. These findings suggest that Sp1 is implicated in the control of basal TNFAIP1 gene expression. Accordingly, Sp1 is supposed to be involved in the elevation of TNFAIP1 in response to TNF alpha induction, and thus participate in inflammation-associated angiogenesis.  相似文献   

12.
MicroRNAs (MiRs) are short noncoding RNAs that can regulate gene expression. It has been reported that miR-21 suppresses apoptosis in activated T cells, but the molecular mechanism remains undefined. Tumor suppressor Tipe2 (or tumor necrosis factor-α-induced protein 8 (TNFAIP8)-like 2 (TNFAIP8L2)) is a newly identified anti-inflammatory protein of the TNFAIP8 family that is essential for maintaining immune homeostasis. We report here that miR-21 is a direct target of nuclear factor-κB and could regulate Tipe2 expression in a Tipe2 coding region-dependent manner. In activated T cells and macrophages, Tipe2 expression was markedly downregulated, whereas miR-21 expression was upregulated. Importantly, Tipe2-deficient T cells were significantly less sensitive to apoptosis. Conversely, overexpression of Tipe2 in EL-4 T cells increased their susceptibility to activation-induced apoptosis. Therefore, Tipe2 provides a molecular bridge between miR-21 and cell apoptosis; miR-21 suppresses apoptosis in activated T cells at least in part through directly targeting tumor suppressor gene Tipe2.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
We have previously shown that the heavy chains (HCs) of inter-alpha-trypsin inhibitor (IalphaI) become covalently linked to hyaluronan (HA) during in vivo and in vitro expansion of porcine oocyte-cumulus cell complexes (OCCs). We have now studied by immunoblotting the synthesis of tumor necrosis factor alpha-induced protein 6 (TNFAIP6), which is essential for catalyzing this reaction in expanding mouse OCCs. Expanding OCCs were collected from preovulatory follicles of naturally cycling pigs and also after in vitro culture (24 or 42 h) in medium supplemented with FSH and pig serum. After isolation, OCCs were treated with Streptomyces hyaluronidase or Chondroitinase ABC. Matrix, cell pellet, and total extracts were analyzed by Western blotting. A band of about 35 kDa and a doublet of about 120 kDa, corresponding to the molecular weight of the native and HC-linked forms of TNFAIP6, respectively, were detected by a rabbit anti-human TNFAIP6 polyclonal antibody in matrix extracts of expanded cumuli. Moreover, we found by using a cell-free assay that porcine follicular fluid collected from follicles at 24 h after hCG stimulation contains HC-HA coupling activity. This activity was abolished by the rat anti-human monoclonal antibody A38, which has an epitope within the Link module domain of TNFAIP6. These experiments suggest that free TNFAIP6 protein was present in follicular fluid aspirated from porcine follicles 24 h after hCG stimulation. In contrast to mouse, we show that the A38 monoclonal antibody does not affect in vitro cumulus expansion of porcine OCCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号