首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glucose oxidase (GOD) was covalently immobilized onto Fe3O4/SiO2 magnetic nanoparticles (FSMNs) using glutaraldehyde (GA). Optimal immobilization was at pH 6 with 3-aminopropyltriethoxysilane at 2% (v/v), GA at 3% (v/v) and 0.143 g GOD per g carrier. The activity of immobilized GOD was 4,570 U/g at pH 7 and 50°C. The immobilized GOD retained 80% of its initial activity after 6 h at 45°C while free enzyme retained only 20% activity. The immobilized GOD maintained 60% of its initial activity after 6 cycles of repeated use and retained 75% of its initial activity after 1 month at 4°C whereas free enzymes retained 62% of its activity.  相似文献   

2.
The chemistry induced by atmospheric pressure DC discharges above a water surface in CO(2)/N(2)/H(2)O mixtures was investigated. The gaseous mixtures studied represent a model prebiotic atmosphere of the Earth. The most remarkable changes in the chemical composition of the treated gas were the decomposition of CO(2) and the production of CO. The concentration of CO increased logarithmically with the increasing input energy density and an increasing initial concentration of CO(2) in the gas. The highest achieved concentration of CO was 4.0 +/- 0.6 vol. %. The production of CO was crucial for the synthesis of organic species, since reactions of CO with some reactive species generated in the plasma, e. g. H* or N* radicals, were probably the starting point in this synthesis. The presence of organic species (including the tentative identification of some amino acids) was demonstrated by the analysis of solid and liquid samples by high-performance liquid chromatography, infrared absorption spectroscopy and proton-transfer-reaction mass spectrometry. Formation of organic species in a completely inorganic CO(2)/N(2)/H(2)O atmosphere is a significant finding for the theory of the origins of life.  相似文献   

3.
In this work, the structural, compositional, optical, and dielectric properties of Ga2S3 thin films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and ultraviolet—visible light spectrophotometry. The Ga2S3 thin films which exhibited amorphous nature in its as grown form are observed to be generally composed of 40.7 % Ga and 59.3 % S atomic content. The direct allowed transitions optical energy bandgap is found to be 2.96 eV. On the other hand, the modeling of the dielectric spectra in the frequency range of 270–1,000 THz, using the modified Drude-Lorentz model for electron-plasmon interactions revealed the electrons scattering time as 1.8 (fs), the electron bounded plasma frequency as ~0.76–0.94 (GHz) and the reduced resonant frequency as 2.20–4.60 ×1015 (Hz) in the range of 270–753 THz. The corresponding drift mobility of electrons to the terahertz oscillating incident electric field is found to be 7.91 (cm 2/Vs). The values are promising as they nominate the Ga2S3 thin films as effective candidates in thin-film transistor and gas sensing technologies.  相似文献   

4.
Metal oxide semiconductors (MOS) are important and promising materials in optoelectronics, and it has been widely used in various catalytic applications such as gas sensing due to its high reactivity with many gases. In current work, mixtures of SnO2-WO3 (1:1) were prepared to synthesize nanostructured thin films by pulsed laser deposition as gas sensors. The sensitivity of sensors was measured for a relatively low concentration (200 ppm) of NO2 gas at room temperature; sensors prepared with target exposed to (200) laser shots have higher sensitivity with a maximum value of 96.49 % at time 65 s as compared with the sensors prepared with (150) laser shots where the sensitivity has a maximum value 71.82 % at time 110 s; XRD pattern shows a better crystalline and high intensity with increasing laser shots up to 200; scanning electron microscopy (SEM) micrographs show approximate homogeneity of grains that cover the substrate without cracks and pinholes with nanoparticles fall in micro and nanometer range 50–200 nm. The values of the direct band gap were found to be 2.07143 eV for films prepared with 150 laser shots and 2.02899 eV for films prepared with 200 laser shots which have higher absorbance than the former films due to the increment in thickness and particle size. Empirical equations between sensitivity and gas exposure time have been formulated with great coincidence with the experimental data.  相似文献   

5.
In2O3 nanoparticle-assembled nanorods with distinct surface morphologies have been newly synthesized by a dehydration process of self-assembled In(OH)3 nanorods obtained from a liquid-based route. The reaction mechanism and the structural transformation between these two one-dimensional nanorods, In2O3 and In(OH)3, were precisely characterized by means of various qualitative and quantitative analyses with X-ray scattering simulations. The broad absorption band in the UV–visible spectrum evidently originates from the nanoparticle-assembling effect within the In2O3 nanorods. An intensive photoluminescence emission at 440 nm observed under an excitation wavelength of 325 nm is attributed to the existence of oxygen vacancies within the In2O3 nanorods.  相似文献   

6.
Two-dimensional numerical simulations of a dc discharge in a CH4/H2/N2 mixture in the regime of deposition of nanostructured carbon films are carried out with account of the cathode electron beam effects. The distributions of the gas temperature and species number densities are calculated, and the main plasmachemical kinetic processes governing the distribution of methyl radicals above the substrate are analyzed. It is shown that the number density of methyl radicals above the substrate is several orders of magnitude higher than the number densities of other hydrocarbon radicals, which indicates that the former play a dominant role in the growth of nanostructured carbon films. The model is verified by comparing the measured optical emission profiles of the H(n ≡ 3), C 2 * , CH*, and CN* species and the calculated number densities of excited species, as well as the measured and calculated values of the discharge voltage and heat fluxes onto the electrodes and reactor walls. The key role of ion–electron recombination and dissociative excitation of H2, C2H2, CH4, and HCN molecules in the generation of emitting species (first of all, in the cold regions adjacent to the electrodes) is revealed.  相似文献   

7.
Prior chemical and physical analysis of lunar soil suggests a composition of dust particles that may contribute to the development of acute and chronic respiratory disorders. In this study, fine Al2O3 (0.7 μm) and fine SiO2 (mean 1.6 μm) were used to assess the cellular uptake and cellular toxicity of lunar dust particle analogs. Respiratory cells, murine alveolar macrophages (RAW 264.7) and human type II epithelial (A549), were cultured as the in vitro model system. The phagocytic activity of both cell types using ultrafine (0.1 μm) and fine (0.5 μm) fluorescent polystyrene beads was determined. Following a 6-h exposure, RAW 264.7 cells had extended pseudopods with beads localized in the cytoplasmic region of cells. After 24 h, the macrophage cells were rounded and clumped and lacked pseudopods, which suggest impairment of phagocytosis. A549 cells did not contain beads, and after 24 h, the majority of the beads appeared to primarily coat the surface of the cells. Next, we investigated the cellular response to fine SiO2 and Al2O3 (up to 5 mg/ml). RAW 264.7 cells exposed to 1.0 mg/ml of fine SiO2 for 6 h demonstrated pseudopods, cellular damage, apoptosis, and necrosis. A549 cells showed slight toxicity when exposed to fine SiO2 for the same time and dose. A549 cells had particles clustered on the surface of the cells. Only a higher dose (5.0 mg/ml) of fine SiO2 resulted in a significant cytotoxicity to A549 cells. Most importantly, both cell types showed minimal cytotoxicity following exposure to fine Al2O3. Overall, this study suggests differential cellular toxicity associated with exposure to fine mineral dust particles.  相似文献   

8.
A density functional theory (DFT) study of cct-As, ccc, and cct-CO isomers of the ruthenium dihydride complex RuH2(CO)2(AsMe2Ph)2 is reported (see Scheme for the labeling isomer 34 structures of RuH2(CO)2(AsMe2Ph)2). Complex geometries and relative energies of different isomers have been calculated with both B3LYP and M06-2X functionals. The results show that the B3LYP calculated Boltzmann populations of cct-As, ccc, and cct-CO isomers are 65.5, 34.2, and 0.3%, respectively. These are in better agreement with the experimental data than those calculated at the M06-2X level. However, the calculations of 1H NMR chemical shifts were found to be better described with M06-2X than with B3LYP or with HF level of theories. In addition, a transition state between the two most stable isomers was determined through DFT/(B3LYP or M06-2X) calculations.
Graphical Abstract Scheme: Labeling structure of RuH2(CO)2(AsMe2Ph)2
  相似文献   

9.
The role of Au@SiO2 core-shell nanoparticles on optical properties of perovskite solar cells has been explored using both the theoretical computations and the experiments. A quasi-static model is used to study the surface plasmon resonances (SPRs) of Au@SiO2 core-shell nanospheres. Au@SiO2 core-shell nanoparticles, with varying shell thickness and core radius, were assumed to be embedded in methylammonium lead triiodide (CH3NH3PbI3) perovskite active layer. Enhanced absorption in the active layer is obtained due to the near-field plasmonic effect of the embedded core-shell nanoparticles. Theoretical modelling shows that a shell thickness of 1 nm and core diameter of 20 nm provide absorption enhancement in the orange-red region of the electromagnetic spectrum. Experiments performed using ~20-nm-sized Au@SiO2 core-shell nanoparticles (with a shell thickness of ~1 nm) clearly demonstrate the enhanced absorption and the resulting enhancement in photocurrent due to the plasmonic effects. An efficiency enhancement of over 18 % is obtained for the best plasmonic perovskite solar cell containing Au@SiO2 nanoparticles in Au@SiO2-TiO2 weight ratio of ~1 %. Incident photon-to-current conversion efficiency (IPCE) data also showed enhancement in photocurrent for the plasmonic device. The quasi-static modelling approach provides a good correlation between theory and experiment.  相似文献   

10.
Defective colloids of blue MoOx nanosheets were prepared by anodizing exfoliation method in water. This colloidal solution exhibits an optical plasmonic absorption band in the infrared region at about 760 nm. Merely mixing HAuCl4 solution with the MoOx leads to loss of the blue color, decaying of 760 nm plasmonic peak and simultaneous formation of the gold plasmon absorption peak at 550–570 nm. Some spectral variations in gold plasmonic peak and MoOx optical band gap were observed for Mo:Au ratio of 10:1, 20:1, 30:1, and 40:1. The size of the gold nanoparticles was in the 5–6 nm range with fcc crystalline structure. X-ray photoelectron spectroscopy (XPS) revealed that the initial solution contains Mo5+ states and hydroxyl groups, which after reduction, hydroxyl groups are eliminated and the Mo5+ states converted to Mo6+. The obtained Au-MoO3 colloids have a gasochromic property in which they are colored back to blue in the presence of hydrogen gas and the molybdenum oxide absorption peak recovered again. Furthermore, it was observed that both gold and Mo oxide plasmonic peaks redshift by insertion of hydrogen gas which is attributed to change in solution refractive index and formation of defect concentration.  相似文献   

11.
SiO2-ionized loess was prepared from the reaction of loess and sodium hydroxide at 1,400°C for 2 h. The antibacterial activity of SiO2-ionized loess against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aerusinosa, and Propionobacterium acnes causing acne was examined by comparing the results against those of untreated loess, and treatment efficacy was examined for treating acne using soap containing SiO2-ionized loess. The minimum inhibitory concentration value of SiO2-ionized loess against S. aureus, P. aerusinosa, B. subtilis, E. coli, and P. acne was 10.0, 10.0, 2.5, 5.0, and 2.5 mg/mL, respectively. However, medium containing untreated loess had no antimicrobial activity. A treatment efficacy test revealed that acne symptoms decreased as the duration of using soap containing SiO2-ionized loess increased.  相似文献   

12.

Background  

Protease activated receptors (PARs) consist of a family of four G protein-coupled receptors. Many types of cells express several PARs, whose physiological significance is mostly unknown.  相似文献   

13.
An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations.  相似文献   

14.
The interaction of cis-[PtCl2(Me2SO)2] with human serum albumin (HSA) and the sensitivity of the complex to heat denaturation as dependent on the duration of incubation have been studied by UV absorption and fluorescence spectroscopy. Optimal conditions for cis-[PtCl2(Me2SO)2] binding to HSA have been determined. The results are compared with the data for the HSA-cisplatin complex. It has been found that binding of HSA with cis-[PtCl2(Me2SO)2] does not result in significant structural changes of the protein.  相似文献   

15.
16.
A theoretical study of a sandwich compound with a metal monolayer sheet between two aromatic ligands is presented. A full geometry optimization of the [Au3Cl3Tr2]2+ (1) compound, which is a triangular gold(I) monolayer sheet capped by chlorines and bounded to two cycloheptatrienyl (Tr) ligands was carried out using perturbation theory at the MP2 computational level and DFT. Compound (1) is in agreement with the 18–electron rule, the bonding nature in the complex may be interpreted from the donation interaction coming from the Tr rings to the Au array, and from the back-donation from the latter to the former. NICS calculations show a strong aromatic character in the gold monolayer sheet and Tr ligands; calculations done with HOMA, also report the same aromatic behavior on the cycloheptatrienyl fragments giving us an insight on the stability of (1). The Au –Au bond lengths indicate that an intramolecular aurophilic interaction among the Au(I) cations plays an important role in the bonding of the central metal sheet. Figure (a) Ground state geometry of complex 1; (b) Top view of compound 1 and Wiberg bond orders computed with the MP2/B1 computational method; (c) Lateral view of compound 1 and NICS values calculated with the MP2/B1 method; the values in parenthesis were obtained at the VWN/TZP level  相似文献   

17.
In this paper, we report a study on the structure and first hyperpolarizability of C60Cl2 and C60F2. The calculation results show that the first hyperpolarizabilities of C60Cl2 and C60F2 were 172 au and 249 au, respectively. Compared with the fullerenes, the first hyperpolarizability of C60Cl2 increased from 0 au to 172 au, while the first hyperpolarizability of C60F2 increased from 0 au to 249 au. In order to further increase the first hyperpolarizability of C60Cl2 and C60F2, Li@C60Cl2 and Li@C60F2 were obtained by introducing a lithium atom to C60Cl2 and C60F2. The first hyperpolarizabilities of Li@C60Cl2 and Li@C60F2 were 2589 au and 985 au, representing a 15-fold and 3.9-fold increase, respectively, over those of C60Cl2 and C60F2. The transition energies of four molecules (C60Cl2, Li@C60Cl2, C60F2, Li@C60F2) were calculated, and were found to be 0.17866 au, 0.05229 au, 0.18385 au, and 0.05212 au, respectively. A two-level model explains why the first hyperpolarizability increases for Li@C60Cl2 and Li@C60F2.  相似文献   

18.
We investigated the effect of SiO2 spacer layer thickness between the textured silicon surface and silver nanoparticles (Ag NPs) on solar cell performance using quantum efficiency analysis. Separation of Ag NPs from high index silicon with SiO2 layer led to modified absorption and scattering cross-sections due to graded refractive index medium. The forward scattering from Ag NPs is very sensitive to SiO2 layer thickness in plasmonic silicon cell performance due to the evanescent character of generated near-fields around the NPs. With the optimized ~30–40 nm SiO2 spacer layer, we observed an enhancement of solar cell efficiency from ~8.7 to ~10 %, which is due to the photocurrent enhancement in the off-resonance surface plasmon region. We also estimated minority carrier diffusion lengths (L eff) from internal quantum efficiency data, which are also sensitive to SiO2 spacer layer thickness. We observed that the L eff values are enhanced from ~356 to ~420 μm after placing Ag NPs on ~40 nm spacer layer due to improved forward (angular) scattering of light from the Ag NPs into silicon.  相似文献   

19.
In brain mitochondria succinate activates H2O2 release, concentration dependently (starting at 15 μM), and in the presence of NAD dependent substrates (glutamate, pyruvate, β-hydroxybutyrate). We report that TCA cycle metabolites (citrate, isocitrate, α-ketoglutarate, fumarate, malate) individually and quickly inhibit H2O2 release. When they are present together at physiological concentration (0.2, 0.01, 0.15, 0.12, 0.2 mM respectively) they decrease H2O2 production by over 60% at 0.1–0.2 mM succinate. The degree of inhibition depends on the concentration of each metabolite. Acetoacetate is a strong inhibitor of H2O2 release, starting at 10 μM and acting quickly. It potentiates the inhibition induced by TCA cycle metabolites. The action of acetoacetate is partially removed by β-hydroxybutyrate. Removal is minimal at 0.1 mM acetoacetate, and is higher at 0.5 mM acetoacetate. We conclude that several inhibitors of H2O2 release act jointly and concentration dependently to rapidly set the required level of H2O2 generation at each succinate concentration.  相似文献   

20.
The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the inhibitory effect of H2O2 is especially pronounced for cyanobacteria. A specific damage of the photosynthetic apparatus was demonstrated by changes in 77 K fluorescence emission spectra. Different handling of oxidative stress and different cell structure are responsible for the different susceptibility to H2O2 between cyanobacteria and other phytoplankton species. This principle may be potentially employed in the development of new agents to combat cyanobacterial bloom formation in water reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号