首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
alpha-L-Iduronidase activity is deficient in mucopolysaccharidosis type I (MPS I; Hurler syndrome, Scheie syndrome) patients and results in the disruption of the sequential degradation of the glycosaminoglycans dermatan sulfate and heparan sulfate. A monoclonal antibody-based immunoquantification assay has been developed for alpha-L-iduronidase, which enables the detection of at least 16 pg alpha-L-iduronidase protein. Cultured human skin fibroblasts from 12 normal controls contained 17-54 ng alpha-L-iduronidase protein/mg extracted cell protein. Fibroblasts from 23 MPS I patients were assayed for alpha-L-iduronidase protein content. Fibroblast extracts from one MPS I patient contained at least six times the level of alpha-L-iduronidase protein for normal controls--but contained no associated enzyme activity--and is proposed to represent a mutation affecting the active site of the enzyme. Fibroblast extracts from 11 MPS I patients contained 0.05-2.03 ng alpha-L-iduronidase protein/mg extracted cell protein, whereas immunodetectable protein could not be detected in the other 11 patients. Four fibroblast extracts with no immunodetectable alpha-L-iduronidase protein had residual alpha-L-iduronidase activity, suggesting that the mutant alpha-L-iduronidase in cultured cells from these MPS I patients has been modified to mask or remove the epitopes detected by two monoclonal antibodies used in the quantification assay. Both the absence of immunoreactivity in a mild MPS I patient and high protein level in a severe MPS I patient present limitations to the use of immunoquantification analysis as a sole measure of patient phenotype. Enzyme kinetic analysis of alpha-L-iduronidase from MPS I fibroblasts revealed a number of patients with either abnormal substrate binding or catalytic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Mucopolysaccharidosis type I (MPS I: McKusick 25280) is a clinically heterogenous lysosomal storage disorder which is caused by a variable deficiency in alpha-L-iduronidase activity (alpha-L-iduronide iduronohydrolase, EC 3.2.1.76). Cultured fibroblasts from an MPS I patient (cell line 2827) with a severe clinical phenotype (Hurler syndrome) have been characterized using immunochemical and biochemical techniques. Using a specific immunoquantification assay, we have demonstrated that cell line 2827 had an alpha-L-iduronidase protein content (189 ng/mg of extracted cell protein) at least six times greater than the mean level found in normal control fibroblasts (30 ng/mg of extracted cell protein). This was the only MPS I cell line, from a group of 23 MPS I patients, that contained greater than 7% of the mean level of alpha-L-iduronidase protein detected in normal controls. Cell line 2827 had very low alpha-L-iduronidase activity toward the fluorogenic substrate 4-methylumbelliferyl-alpha-L-iduronide, and a radiolabeled disaccharide substrate derived from heparin. Maturation studies of alpha-L-iduronidase in cell line 2827 showed apparently normal levels of alpha-L-iduronidase synthesis with delayed processing to the mature form. Subcellular fractionation experiments demonstrated alpha-L-iduronidase protein in lysosomal-enriched fractions isolated from cell line 2827, suggesting a normal cell distribution and supporting the proposed delayed processing. It is proposed that the MPS I patient described has an alpha-L-iduronidase gene mutation which affects both the active site and post-translational processing of the enzyme. This mutation must be structurally conservative because it does not result in instability either during maturation or in the lysosome.  相似文献   

3.
The apparent Km of residual acidic α-mannosidase detected in fibroblast extracts from four unrelated patients with mannosidosis was increased to >25mM for a fluorogenic substrate compared to 0.86–0.96mM for controls. The mutant enzyme was also more labile with heat treatment. These findings indicate a mutation in the structural gene for this enzyme. The altered kinetics of mutant enzyme can result in apparently normal enzyme specific activity at high concentrations of fluorogenic substrate creating potential for errors in the diagnosis of mannosidosis.  相似文献   

4.
A novel fluorogenic substrate (methylumbelliferyl 2-acetamido-2-deoxy-β-d-lactoside) has been prepared enzymatically. A procedure has been developed for its use as a convenient and sensitive fluorogenic substrate for β-d-galactosidase assay with a potential for high substrate specificity. The merits of this new fluorogenic substrate for β-d-galactosidase assays are discussed, together with the potential of this approach for a wider range of enzyme activities.  相似文献   

5.
A quantitative assay of beta-galactosidase activity in single cells of Saccharomyces cerevisiae has been developed using a fluorogenic substrate and flow cytometry [reported in Wittrup & Bailey, Cytometry, 9,394 (1988)]. The beta-galactosidase activity is expressed in yeast from the Escherichia coli lacZ gene under the control of the yeast GAL10 promoter, and is used as a marker for multicopy plasmid content. A nonfluorescent fluorogenic substrate is enzymatically cleaved by intracellular beta-galactosidase to form a fluorescent product. The accumulation of fluorescent product in single cells was found to depend on bulk substrate concentration and single-cell enzyme activity in a fashion that could not be described by a Michaelis-Menten kinetic rate form. It has been demonstrated that diffusion limitation rather than enzyme activity can determine the level of single-cell fluorescence under certain assay conditions, and a mathematical model has; been formulated which accounts for substrate and product diffusion. Guided by the mathematical model, the assay conditions were modified to allow measurement of single-cell enzyme activity rather than diffusion rates.  相似文献   

6.
alpha-L-Iduronidase from human liver was purified by a three-step five-column procedure and by immunoaffinity chromatography with a monoclonal antibody raised against purified enzyme. Seven bands identified by staining with Coomassie Blue had molecular masses of 74, 65, 60, 49, 44, 18 and 13 kDa and were present in both preparations of the liver enzyme. However, relative to the immunopurification procedure, alpha-L-iduronidase purified by the five-column procedure was considerably enriched in the 65 kDa polypeptide band. The seven bands were identified by Western-blot analysis with two different monoclonal antibodies raised against alpha-L-iduronidase. The chromatographic behaviour of alpha-L-iduronidase on the antibody column was dependent upon the quantity of enzyme loaded. Above a particular load concentration a single peak of enzyme activity was eluted, whereas at load concentrations below the critical value alpha-L-iduronidase was eluted in two peaks of activity, designated form I (eluted first) and form II (eluted second). The following properties of the two forms of alpha-L-iduronidase were determined. (1) The two forms from liver were composed of different proportions of the same seven polypeptides. (2) When individually rechromatographed on the antibody column, each form from liver shifted to a more retarded elution position but essentially retained its chromatographic behaviour relative to the other form. (3) Forms I and II of liver alpha-L-iduronidase showed no difference in their activities towards disaccharide substrates derived from two glycosaminoglycan sources, heparan sulphate and dermatan sulphate. (4) The native molecular size of forms I and II of liver alpha-L-iduronidase was 65 kDa as determined by gel-permeation chromatography. (5) Immunoaffinity chromatography of extracts of human lung and kidney resulted in the separation of alpha-L-iduronidase into two forms, each with different proportions of the seven common polypeptide species. (6) Lung forms I and II were taken up readily into cultured skin fibroblasts taken from a patient with alpha-L-iduronidase deficiency. Liver forms I and II were not taken up to any significant extent. Lung form II gave intracellular contents of alpha-L-iduronidase that were more than double those of normal control fibroblasts, whereas lung form I gave contents approximately equal to normal control values. We propose that all seven polypeptides are derived from a single alpha-L-iduronidase gene product, and that different proportions of these polypeptides can function as a single alpha-L-iduronidase entity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
A new fluorogenic compound--6-hexadecanoylamino-4-methyl-umbelliferyl-beta-D-gala cto pyranoside (HMGal), a substrate for human galactocerebroside beta-D-galactosidase (HG), has been synthesized. A method for determining the HG activity based on the use of HMGal as a fluorogenic substrate has been developed. The specificity of HMGal hydrolysis by HG has been demonstrated in experiments with enzyme preparations from human skin fibroblasts and leukocytes in normally and in hereditary glycolipidosis (GM1-gangliosidosis and Krabbe's disease). The use of HMGal permits to markedly increase the sensitivity of the method used for determining the HG activity.  相似文献   

8.
A novel caspase-3 substrate N-Ac-DEVD-N'-MC-R110, which is a fluorogenic substrate cleavable in a single step, has been prepared. It has a significantly higher enzyme turnover rate and sensitivity for detecting caspase-3 activity both in solution and living cells than existing fluorogenic substrates.  相似文献   

9.
A reproducible and convenient method for assaying glucocerebrosidase activity using the natural substrates has been developed. From the insoluble pellet fraction of cultured skin fibroblast homogenates, released glucose was measured enzymically using hexokinase coupled with the glucose-6-phosphate dehydrogenase (G6PD) and nicotinamide adenine dinucleotide phosphate (NADP) system. Optimal enzyme assay conditions required both Triton X-100 and sodium taurocholate, pH 4.8. Glucocerebrosidase activities from three patients with type 1 Gaucher disease were 17.5%, 15.8%, and 11.2% of normal (normal = 198 +/- 14 nmol/hr per mg protein, n = 3). The first patient had normal beta-glucosidase activity with the artificial fluorogenic umbelliferone substrate. Interference with the accuracy of the glucose-dependent assay system by either glycolytic or gluconeogenic enzyme activites was not detected under these experimental conditions, and when substrates with long fatty-acid chain lengths (C = 22) were used, markedly decreased glucocerebrosidase activity occurred in both normal individuals and patients. The apparent Km's for the natural substrates were 0.56 +/- 0.05 mM for controls and 2.2-3.3 mM for Gaucher fibroblasts. These data further support the hypothesis that a structurally altered and catalytically deficient enzyme is synthesized in patients with type 1 Gaucher disease and illustrate the value of the natural substrate in investigating patients.  相似文献   

10.
A small amount of peptidase activity could be detected using an amine derivatizing reagent, fluorescein isothiocyanate (FITC), which has been used to produce a fluorogenic peptide. The substrate produced, FITC-peptide, gave a clear spot on a silica gel sheet upon exposure to UV light. The peptidase activity of angiotensin-converting enzyme (ACE), trypsin, chymotrypsin, cucumisin, and that of some plant tissues were detected by using a fluorogenic angiotensin I. This showed that the substrate specificity of proteolytic enzymes can be distinguished from the others by this procedure.  相似文献   

11.
Determination of the sensitivity of influenza viruses to neuraminidase (NA) inhibitors is presently based on assays of NA function because, unlike available cell culture methods, the results of such assays are predictive of susceptibility in vivo. At present the most widely used substrate in assays of NA function is the fluorogenic reagent 2'-O-(4-methylumbelliferyl)-N-acetylneuraminic acid (MUN). A rapid assay with improved sensitivity is required because a proportion of clinical isolates has insufficient NA to be detectable in the current fluorogenic assay, and because some mutations associated with resistance to NA inhibitors reduce the activity of the enzyme. A chemiluminescence-based assay of NA activity has been developed that uses a 1,2-dioxetane derivative of sialic acid (NA-STAR) as the substrate. When compared with the fluorogenic assay, use of the NA-STAR substrate results in a 67-fold reduction in the limit of detection of the NA assay, from 200 pM (11 fmol) NA to 3 pM (0.16 fmol) NA. A panel of isolates from phase 2 clinical studies of zanamivir, which were undetectable in the fluorogenic assay, was tested for activity using the NA-STAR substrate. Of these 12 isolates with undetectable NA activity, 10 (83%) were found to have detectable NA activity using the NA-STAR substrate. A comparison of sensitivity to zanamivir of a panel of influenza A and B viruses using the two NA assay methods has been performed. IC(50) values for zanamivir using the NA-STAR were in the range 1.0-7.5 nM and those for the fluorogenic assay in the range 1. 0-5.7 nM (n = 6). The NA-STAR assay is a highly sensitive, rapid assay of influenza virus NA activity that is applicable to monitoring the susceptibility of influenza virus clinical isolates to NA inhibitors.  相似文献   

12.
Mucopolysaccharidosis type I (MPS I; McKusick 25280; Hurler syndrome, Hurler-Scheie syndrome and Scheie syndrome) is caused by a deficiency in the lysosomal hydrolase, alpha-L-iduronidase (EC 3.2.1.76). MPS I patients present within a clinical spectrum bounded by the extremes of Hurler and Scheie syndromes. The alpha-L-iduronidase missense mutations R89Q and R89W were investigated and altered an important arginine residue proposed to be a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. The R89Q alpha-L-iduronidase mutation was shown to result in a reduced level of alpha-L-iduronidase protein (< or =10% of normal control) compared to a normal control level of alpha-L-iduronidase protein that was detected for the R89W alpha-L-iduronidase mutation. When taking into account alpha-L-iduronidase specific activity, the R89W mutation had a greater effect on alpha-L-iduronidase activity than the R89Q mutation. However, overall the R89W mutation produced more residual alpha-L-iduronidase activity than the R89Q mutation. This was consistent with MPS I patients, with an R89W allele, having a less severe clinical presentation compared to MPS I patients with either a double or single allelic R89Q mutation. The effects of the R89Q and R89W mutations on enzyme activity supported the proposed role of R89 as a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase.  相似文献   

13.
A sensitive fluorescence assay that employs a new fluorogenic peptide substrate has been developed to continuously measure the proteolytic activity of human renin. The substrate, DABCYL-gaba-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Thr-EDANS, has been designed to incorporate the renin cleavage site that occurs in the N-terminal peptide of human angiotensinogen. The assay relies upon resonance energy transfer-mediated, intramolecular fluorescence quenching that occurs in the intact peptide substrate. Efficient fluorescence quenching occurs as a result of favorable energetic overlap of the EDANS excited state and the DABCYL absorption, and the relatively long excited state lifetime of the EDANS fluorophore. Cleavage of the substrate by renin liberates the peptidyl-EDANS fragment from proximity with the DABCYL acceptor, restoring the higher, unattenuated fluorescence of the EDANS moiety. This leads to a time-dependent increase in fluorescence intensity, directly related to the extent of substrate consumed by renin cleavage. The kinetics of renin-catalyzed hydrolysis of this substrate have been shown to be consistent with a simple substrate inhibition model with a substrate Km 1.5 μM at physiological pH; Cleavage of the substrate occurs specifically at the Leu-Val bond and corresponds to the renin cleavage site of angiotensinogen, as reported earlier. In this report, we describe in detail the synthesis of the fluorogenic renin substrate and its application in assays of renin activity. Assay sensitivity has been evaluated by a series of enzyme dilution experiments using the continuous assay format, showing that the assay can detect renin as low as 30 ng/ml after a incubation of only 3-5 min. It was estimated that with extended incubation time (2-3 h) the assay can detect renin at 0.5 ng/ml concentration level. An automated, high throughput fluorometric renin assay has been developed for a 96-well microtiter-plate fluorescence reader, which is useful for studies of enzyme inhibitors and enzyme stability.  相似文献   

14.
Elastase activities in intact human bladder cancer cell lines, established from three patients, were measured using a fluorogenic substrate highly specific for elastase, under conditions of physiological pH and ionic strength. This method allowed separation of cell-associated from secreted enzyme activity. As secreted elastase accounted for only 8% of the total, we concluded that the elastases were present at the cell surface. Inhibition studies using extracts of cell-surface elastases showed them to be serine proteinases which were also inhibited by alpha 1-antitrypsin. Partially purified fractions showing the highest specific activity towards the fluorogenic substrate hydrolysed insoluble elastin thus confirming the presence of elastases. This is the first time that elastase activity has been demonstrated in human bladder cancer cells and may represent a mechanism involved in tumour invasion.  相似文献   

15.
alpha-L-Iduronidase is a lysosomal enzyme, the deficiency of which causes mucopolysaccharidosis I (MPS I); a canine MPS I colony has been bred to test therapeutic intervention. The enzyme was purified to apparent homogeneity from canine testis and found to consist of two electrophoretically separable proteins that had common internal peptides but differed at their amino termini. A 57-base oligonucleotide, corresponding to the most probable codons of the longest peptide, was used to screen a canine testis cDNA library. Three cDNAs were isolated, two of which lacked the 5'-end whereas the third was full-length except for a small internal deletion. The composite sequence encodes an open reading frame of 655 amino acids that includes all sequenced peptides. The amino terminus of the larger protein, glutamic acid 26, is at the predicted signal peptide cleavage site, whereas the amino terminus of the smaller protein is leucine 106. There are six potential N-glycosylation sites and a non-canonical polyadenylation signal, CTTAAA. A search of GenBank showed that the amino acid sequence of alpha-L-iduronidase has similarity to that of a bacterial beta-xylosidase. A full-length cDNA corresponding to the composite sequence was constructed (pcIdu) and inserted into the pSVL expression vector (pSVcIdu). Two days after Cos-1 cells were transfected with pSVcIdu, their intracellular and secreted level of alpha-L-iduronidase activity has increased 8- and 22-fold, respectively, over the endogenous activity. Fibroblasts of MPS I dogs, which have no alpha-L-iduronidase activity, lacked the normal alpha-L-iduronidase mRNA of 2.2 kilobases and contained instead a trace amount of a 2.8-kilobase species. Isolation and characterization of an expressible alpha-L-iduronidase cDNA represents the first step toward mutation analysis and replacement therapy.  相似文献   

16.
A new fluorogenic substrate, benzyloxycarbonyl-L-phenylalanine 4-methylcoumaryl-7-ester, has been developed for determination of the esterase activity of alpha-chymotrypsin and related enzymes. Synthesis of the substrate was achieved simply by the carbodiimide condensation of benzyloxycarbonyl-L-phenylalanine and 7-hydroxy-4-methylcoumarin in a 86% yield. The esterase activity was measured by increase of the fluorescence intensity at excitation and emission wavelengths of 325 and 465 nm, respectively. An initial rate of hydrolysis was linear over a 100-fold range of the enzyme concentration. As little as 2 ng of alpha-chymotrypsin could be detected in the standard assay. A typical enzyme assay, stability of the substrate, kinetic parameters, and specific activity have been reported.  相似文献   

17.
Solubilization and characterization of yeast signal peptidase   总被引:2,自引:0,他引:2  
An efficient post-translational assay for solubilized yeast signal peptidase has been developed. The enzyme can be solubilized in nonionic detergent (0.5% Nikkol) without added salt, but salt increased the efficiency of solubilization. Radiosequencing of the cleaved substrate revealed that the enzyme removed the signal peptide. The substrate (prepro-alpha-factor) must be pretreated with sodium dodecyl sulfate to be cleaved. The enzyme displays a broad, alkaline pH optimum, retaining activity at pH 12. Moderately high temperatures (35 degrees C), excess detergent (greater than 0.5% Nikkol), or high salt (greater than 300 mM KOAc) will inactivate the enzyme. Phosphatidylcholine is necessary for optimal activity. The optimal ratio of Nikkol:lipid:sodium dodecyl sulfate is 6.4:2.2:1. The membrane association of yeast signal peptidase is resistant to carbonate extraction, indicating that it is an integral membrane protein.  相似文献   

18.
SARS main protease is essential for life cycle of SARS coronavirus and may be a key target for developing anti-SARS drugs. Recently, the enzyme expressed in Escherichia coli was characterized using a HPLC assay to monitor the formation of products from 11 peptide substrates covering the cleavage sites found in the SARS viral genome. This protease easily dissociated into inactive monomer and the deduced Kd of the dimer was 100 microM. In order to detect enzyme activity, the assay needed to be performed at micromolar enzyme concentration. This makes finding the tight inhibitor (nanomolar range IC50) impossible. In this study, we prepared a peptide with fluorescence quenching pair (Dabcyl and Edans) at both ends of a peptide substrate and used this fluorogenic peptide substrate to characterize SARS main protease and screen inhibitors. The fluorogenic peptide gave extremely sensitive signal upon cleavage catalyzed by the protease. Using this substrate, the protease exhibits a significantly higher activity (kcat = 1.9 s(-1) and Km = 17 microM) compared to the previously reported parameters. Under our assay condition, the enzyme stays as an active dimer without dissociating into monomer and reveals a small Kd value (15 nM). This enzyme in conjunction with fluorogenic peptide substrate provides us a suitable tool for identifying potent inhibitors of SARS protease.  相似文献   

19.
An improved synthesis of fluorogenic substrate analogues for phosphatidylinositol-specific phospholipase C (PI-PLC) is described. The water-soluble substrates, which are derived from fluorescein, are not fluorescent until cleaved by the enzyme, and provide a convenient means to continuously monitor PI-PLC activity. The improvement in the synthesis lies in the method used to protect the hydroxyl groups of the inositol portion of the substrate molecule and allows a milder deprotection procedure to be used. The result is a much more reproducible synthesis of the substrate. The improved procedure has been employed to synthesize a series of fluorogenic substrates, which differ in the length of the aliphatic tail attached to the fluorescein portion of the molecule. The length of the tail was found to have a significant effect on the rate of cleavage of these substrates.  相似文献   

20.
Commercially available sodium heparinate has been sequentially treated with methanolic 0.06M hydrogen chloride and nitrous acid. The nondegraded material was separated by gel filtration from the nonsulfated and monosulfated disaccharides produced. The latter ones, obtained in 10% yield, have been used as a substrate for the direct measurement of the enzyme L-iduronic acid 2-sulfate sulfatase present in human plasma and fibroblast homogenates. Studies of the kinetics and pH optimum of the enzyme, by use of plasma of a patient with mucolipidosis II, indicated an apparent Km of 2.5mM and a pH optimum of 4.6-4.8. The levels of activity in normal plasma and plasma of a patient with Hunter's disease were found to be 20.4 ± 1.22 units (μmol sulfate/24 h/g protein) and 3.25 ± 0.35 units, respectively. In homogenates of cultured skin fibroblasts, the levels were 137.6 ± 10.7 units for normal controls and 6.4 ± 5.1 for patients with Hunter's disease. The plasma of two obligated heterozygotes gave intermediate levels of activity, whereas the plasma of two possible heterozygotes gave either intermediate levels or entirely normal levels of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号