首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thyroid hormones and thyroid hormone receptors (TRs) confer a fundamental regulation of critical genes involved in metabolism, differentiation, and development. A similar role is attributed to the highly conserved zinc-finger factor CTCF. Furthermore, a potential role in tumour suppression has been attributed to CTCF. In addition to promoter regulation, CTCF has also been shown to be involved in chromatin insulation or enhancer blocking. In several cases, binding sites for TR and for CTCF have been found next to each other. Functionally, these sites mediate synergistic repression or induction dependent on the type of binding site and on the presence or absence of thyroid hormone. Here we discuss functional similarities between TR and CTCF and their roles within these composite elements.  相似文献   

2.
本文简要介绍了植物细胞凋亡的一些特点以及植物在营养生长和生殖生长过程中发生的细胞凋亡现象。指出细胞凋亡是植物生长发育过程中正常的生理现象。  相似文献   

3.
Osteoarthritis afflicts millions of individuals across the world resulting in impaired quality of life and increased health costs. To understand this disease, physicians have been studying risk factors, such as genetic predisposition, aging, obesity, and joint malalignment; however have been unable to conclusively determine the direct etiology. Current treatment options are short-term or ineffective and fail to address pathophysiological and biochemical mechanisms involved with cartilage degeneration and the induction of pain in arthritic joints. OA pain involves a complex integration of sensory, affective, and cognitive processes that integrate a variety of abnormal cellular mechanisms at both peripheral and central (spinal and supraspinal) levels of the nervous system Through studies examined by investigators, the role of growth factors and cytokines has increasingly become more relevant in examining their effects on articular cartilage homeostasis and the development of osteoarthritis and osteoarthritis-associated pain. Catabolic factors involved in both cartilage degradation in vitro and nociceptive stimulation include IL-1, IL-6, TNF-α, PGE2, FGF-2 and PKCδ, and pharmacologic inhibitors to these mediators, as well as compounds such as RSV and LfcinB, may potentially be used as biological treatments in the future. This review explores several biochemical mediators involved in OA and pain, and provides a framework for the understanding of potential biologic therapies in the treatment of degenerative joint disease in the future.  相似文献   

4.
Thyroid hormone receptors (TRs) are nuclear receptors that are activated by thyroid hormone ligands and co-regulator proteins. Two receptor subtypes, TRα and TRβ, have been suggested to play a role in numerous physiological functions. However, specificity of receptor subtype function and co-regulator interaction is unclear due to the lack of TR subtype-specific ligands. Five TR ligands were evaluated for their selectivity and interaction with the TR subtypes. A multiplex assay was used to identify co-regulator peptide interaction, and biochemical assays were used to characterize ligand-receptor specificity. In the biochemical assay, rank order ligand potencies were similar in the presence of co-activator peptides, SRC1-2 and SRC3-2, and the co-repressor peptide, NCoR1-2, with T3 and Triac potencies greater in the presence of the co-repressor. The potency of Tetrac was similar regardless of the co-regulator used while T4 and rT3 demonstrated selectivity for TRα subtype. The rank order among TR ligands at either receptor subtype in the biochemical assay correlated with the multiplex assay. These assays can be used to identify new ligands that can provide further insight into TR biology.  相似文献   

5.
Magnesium is involved in a wide range of biochemical reactions that are crucial to cell proliferation, differentiation, angiogenesis, and apoptosis. Changes in magnesium availability have been shown to influence biological responses of immuno-inflammatory cells. Equally plausible seems to be an involvement of magnesium in the multistep and interconnected processes that lead to tumor formation and development; however, the "how" and "when" of such an involvement remain to be defined. Here, we reviewed in vitro and in vivo data that indicated a role for magnesium in many biological and clinical aspects of cancer (from neoplastic transformation to tumor growth and progression or pharmacologic treatment). In adopting this approach we went through a full circle from molecular aspects to observational or epidemiological studies that could reconcile in a unifying picture the otherwise fragmentary or puzzling data currently available on the role of magnesium in cancer.  相似文献   

6.
Calcium and signal transduction in plants   总被引:1,自引:0,他引:1  
Environmental and hormonal signals control diverse physiological processes in plants. The mechanisms by which plant cells perceive and transduce these signals are poorly understood. Understanding biochemical and molecular events involved in signal transduction pathways has become one of the most active areas of plant research. Research during the last 15 years has established that Ca2+ acts as a messenger in transducing external signals. The evidence in support of Ca2+ as a messenger is unequivocal and fulfills all the requirements of a messenger. The role of Ca2+ becomes even more important because it is the only messenger known so far in plants. Since our last review on the Ca2+ messenger system in 1987, there has been tremendous progress in elucidating various aspects of Ca(2+) -signaling pathways in plants. These include demonstration of signal-induced changes in cytosolic Ca2+, calmodulin and calmodulin-like proteins, identification of different Ca2+ channels, characterization of Ca(2+) -dependent protein kinases (CDPKs) both at the biochemical and molecular levels, evidence for the presence of calmodulin-dependent protein kinases, and increased evidence in support of the role of inositol phospholipids in the Ca(2+) -signaling system. Despite the progress in Ca2+ research in plants, it is still in its infancy and much more needs to be done to understand the precise mechanisms by which Ca2+ regulates a wide variety of physiological processes. The purpose of this review is to summarize some of these recent developments in Ca2+ research as it relates to signal transduction in plants.  相似文献   

7.
Chromatin remodeling and human disease   总被引:6,自引:0,他引:6  
In the past few years, there has been a nascent convergence of scientific understanding of inherited human diseases with epigenetics. Identified epigenetic processes involved in human disease include covalent DNA modifications, covalent histone modifications, and histone relocation. Each of these processes influences chromatin structure and thereby regulates gene expression and DNA methylation, replication, recombination, and repair. The importance of these processes for nearly all aspects of normal growth and development is illustrated by the array of multi-system disorders and neoplasias caused by their dysregulation.  相似文献   

8.
Drug options for the life-threatening Cushing's disease are limited, and surgical resection or radiation therapy is not invariably effective. Testicular receptor 4 (TR4) has been identified as a novel drug target to treat Cushing's disease. We built the structure model of TR4 and searched the TR4 antagonist candidate via in silico virtual screening. Bexarotene was identified as an antagonist of TR4 that can directly interact with TR4 ligand binding domain (TR4-LBD) and induces a conformational change in the secondary structure of TR4-LBD. Bexarotene suppressed AtT-20 cell growth, proopiomelanocortin (POMC) expression and adrenocorticotropin (ACTH) secretion. Mechanism dissection revealed that bexarotene could suppress TR4-increased POMC expression via promoting the TR4 translocation from the nucleus to the cytoplasm. This TR4 translocation might then result in reducing the TR4 binding to the TR4 response element (TR4RE) on the 5’ promoter region of POMC. Results from in vivo mouse model also revealed that oral bexarotene administration markedly suppressed ACTH-secreting tumour growth, adrenal enlargement and the secretion of ACTH and corticosterone in mice with already established tumours. Together, these results suggest that bexarotene may be developed as a potential novel therapeutic drug to better suppress Cushing's disease.  相似文献   

9.
《The Journal of cell biology》1996,135(6):1749-1762
The SDYQRL motif of the cytoplasmic domain of TGN38 is involved in targeting TGN38 from endosomes to the TGN. To create a system for studying this pathway, we replaced the native transferrin receptor (TR) internalization motif (YTRF) with the SDYQRL TGN-targeting motif. The advantages of using TR as a reporter molecule include the ability to monitor trafficking, in both biochemical and microscopy experiments, using the natural ligand transferrin. When expressed in CHO cells, the SDYQRL-TR construct accumulated in juxtanuclear tubules and vesicles that are in the vicinity of the TGN. The SDYQRL-TR-containing structures, however, do not colocalize with TGN markers (e.g., NBD ceramide), and therefore the SDYQRL motif is not sufficient to target the TR to the TGN. The morphology of the SDYQRL-TR-containing juxtanuclear structures is different from the recycling compartment found in cells expressing the wild-type TR. In addition, the SDYQRL-TR- containing juxtanuclear compartment is more acidic than the recycling compartment in cells expressing the wild-type TR. The juxtanuclear compartment, however, is a bona fide recycling compartment since SDYQRL- TR was recycled back to the cell surface at a rate comparable to the wild-type TR, and sphingomyelin and cellubrevin, both of which label all compartments of the endocytic recycling pathway, colocalize with SDYQRL-TR in the juxtanuclear structures. These findings demonstrate that expression of the SDYQRL-TR construct alters the morphology and pH of endocytic recycling compartments rather than selectively affecting the intracellular trafficking pathway of the SDYQRL-TR construct. Therefore, the SDYQRL trafficking motif is not simply a molecular address that targets proteins to the TGN, but it can play an active role in determining the physical characteristics of endosomal compartments.  相似文献   

10.
11.
It has been known for at least 20 years that growth factors induce the internalization of cognate receptor tyrosine kinases (RTKs). The internalized receptors are then sorted to lysosomes or recycled to the cell surface. More recently, data have been published to indicate other intracellular destinations for the internalized RTKs. These include the nucleus, mitochondria, and cytoplasm. Also, it is recognized that trafficking to these novel destinations involves new biochemical mechanisms, such as proteolytic processing or interaction with translocons, and that these trafficking events have a function in signal transduction, implicating the receptor itself as a signaling element between the cell surface and the nucleus.  相似文献   

12.
Summary One of the most interesting aspects of plant fertilization is the growth and orientation of the pollen tube from the stigma to the ovary. Considerable research has been carried out in this field but little is yet known about the mechanisms involved in the growth process. Recent research has been focused on the regulation of molecular events in order to discover the specific genes involved in tube growth. Important results in the biochemical and physiological aspects of molecular regulation have been reported. The following review attempts to cover these aspects. It is primarily based on talks presented by the authors at the 13th International Congress on Sexual Plant Reproduction and is mainly addressed to non-experts in the fields of electrophysiology and ion signalling. We aim to present a general overview of electrical currents, ion dynamics, and ion transporters in pollen, and their possible role during pollen tube germination and growth. Together with results on other tip-growing cells, a general model of pollen tube germination and growth as a self-organizing process is proposed.  相似文献   

13.
Molecular and cellular characterization of transferrin receptor 2   总被引:1,自引:0,他引:1  
Iron is an essential component of many biological processes. However, an excess of iron in the body is also toxic; thus, the levels of this element are tightly regulated. Our knowledge of the mechanism by which iron levels are maintained has been bolstered by the dramatic increase in the discovery of novel molecules implicated in iron homeostasis. The transferrin receptor-transferrin pathway is the main mechanism by which cells take up iron. The recently identified homolog of transferrin receptor, its characterization and its role in iron metabolism is the subject of this review.  相似文献   

14.
15.
Thioredoxin reductase (TR), a flavoprotein, catalyzes the reduction of oxidized thioredoxin in a NADPH-dependent manner, and contains a selenocysteine residue near the C-terminus. TR plays an important role in protecting against oxidative stress and in regulating cell growth and cell death. Constitutive TR expression has been observed in several cell types of the mammalian body, including endothelial cells. The latter are continually exposed to both exogenous and endogenous sources of nitric oxide (NO) and NO-derived species. Reactive nitrogen species (RNS) are associated with pathological events, contributing to the cell and tissue damage accompanying inflammation, atherogenesis and autoimmune diseases. In this study, we report on the effect of peroxynitrite on TR in human umbilical vein endothelial cells (HUVECs). Exposure to the peroxynitrite donor SIN-1 for 1 h resulted in a decrease in TR activity. Interestingly, the activity was completely restored within 24 h. To further examine this mechanism, the expression of TR at the mRNA and protein level was examined. TR mRNA levels were markedly increased by treatment of SIN-1 within 6 h, and TR protein level was also increased after the treatment in HUVECs. These results suggest that the inactivation of TR by peroxynitrite might be involved in the upregulation of the TR gene in HUVECs. Therefore, HUVECs have a unique protective mechanism that allows the maintenance of balance in intracellular redox status via TR induction as an adaptive response to nitrooxidative stress.  相似文献   

16.
Recombinant clones of the chicken transferrin receptor gene and cDNA have been isolated and sequenced. Two highly conserved regions have been identified in the 3' noncoding sequence of the human and chicken TR gene. The conserved regions include sequences that have been shown to be involved in the iron-dependent regulation of human TR mRNA stability. These sequences can be modeled as two different types of RNA secondary structures, one containing stem-loop structures that are similar to the iron-responsive elements found in ferritin mRNA and the other being a stable, duplex/stem-loop structure. Both forms show considerable similarity between chicken and human mRNA. The expression of TR is developmentally regulated during erythroid maturation, and immature erythroid cells express exceptionally high levels of TR mRNA.  相似文献   

17.
Thioredoxin reductase 1 (TR1) is a major redox regulator in mammalian cells. As an important antioxidant selenoprotein, TR1 is thought to participate in cancer prevention, but is also known to be over-expressed in many cancer cells. Numerous cancer drugs inhibit TR1, and this protein has been proposed as a target for cancer therapy. We previously reported that reduction of TR1 levels in cancer cells reversed many malignant characteristics suggesting that deficiency in TR1 function is antitumorigenic. The molecular basis for TR1's role in cancer development, however, is not understood. Herein, we found that, among selenoproteins, TR1 is uniquely overexpressed in cancer cells and its knockdown in a mouse cancer cell line driven by oncogenic k-ras resulted in morphological changes characteristic of parental (normal) cells, without significant effect on cell growth under normal growth conditions. When grown in serum-deficient medium, TR1 deficient cancer cells lose self-sufficiency of growth, manifest a defective progression in their S phase and a decreased expression of DNA polymerase alpha, an enzyme important in DNA replication. These observations provide evidence that TR1 is critical for self-sufficiency in growth signals of malignant cells, that TR1 acts largely as a pro-cancer protein and it is indeed a primary target in cancer therapy.  相似文献   

18.
19.
Membrane receptors are internalized either constitutively or upon ligand engagement. Whereas there is evidence for differential regulation of the two processes, little is known about the molecular machinery involved. Previous studies have shown that an unidentified kinase substrate is required for endocytosis of the epidermal growth factor receptor (EGFR), the prototypical ligand-inducible receptor, but not of the transferrin receptor (TfR), the prototypical constitutively internalized receptor. Eps15, an endocytic protein that is tyrosine phosphorylated by EGFR, is a candidate for such a function. Here, we show that tyrosine phosphorylation of Eps15 is necessary for internalization of the EGFR, but not of the TfR. We mapped Tyr 850 as the major in vivo tyrosine phosphorylation site of Eps15. A phosphorylation-negative mutant of Eps15 acted as a dominant negative on the internalization of the EGFR, but not of the TfR. A phosphopeptide, corresponding to the phosphorylated sequence of Eps15, inhibited EGFR endocytosis, suggesting that phosphotyrosine in Eps15 serves as a docking site for a phosphotyrosine binding protein. Thus, tyrosine phosphorylation of Eps15 represents the first molecular determinant, other than those contained in the receptors themselves, which is involved in the differential regulation of constitutive vs. regulated endocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号