首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In production-scale bioreactors microorganisms are exposed to a continually changing environment. This may cause loss of viability, reduction of the yield of biomass or desired metabolites, and an increase in the formation of by-products. In fed-batch production of baker's yeast, profiles may occur in substrate and oxygen concentrations and in pH. This article deals with the influence of a periodically changing oxygen concentration on the growth of baker's yeast in a continuous culture. Also, influences on the production of ethanol, glycerol, acetic acid, and on the composition of the cells were investigated. It was found that relatively fast fluctuations between oxygen-unlimited and oxygen-limited conditions with a frequency of 1 or 2 min had a distinct influence on the biomass and metabolite production. However, RNA, protein, and carbohydrate contents measured in cells exposed to fluctuations differed little from those in cells from an oxygen-unlimited or an oxygen-limited culture. The respiration and fermentation capacities of cells exposed to fluctuations can be larger than the capacities of cells grown under oxygen-unlimited conditions.  相似文献   

2.
Summary An on-line feed rate control system for baker's yeast production using the molasses uptake rate as a feeding index was developed. The optimal feed rate was obtained by maximising the feeding index. The experiments were performed to test this control system in fermenter of 30 m3 total capacity. In baker's yeast process 2760 kg M50 was consumed and 2852 kg compressed yeast (Dc) was produced. Cell yield, final molasses dilution and final yeast concentration were 1.0 kg Dc/kg M50, 1:6.5 and 52 g D100/l, respectively. These results found that the developed feed rate control system is to be successful.  相似文献   

3.
A method of on-line optimal control for fed-batch culture of bakers yeast production is proposed. The feed rate is taken as the control variable. The specific growth rate of the yeast is the output variable and is determined from the balance equation of oxygen. A moving model is obtained by using the data from the feed rate and the specific growth rate. Based on the moving model, an optimal feed rate for fed-batch culture is then achieved.  相似文献   

4.
5.
6.
7.
8.
An optimal substrate feeding for an industrial scale fed-batch fermenter is determined through iterative dynamic programming in order to maximize the cell-mass production and to minimize the ethanol formation. An experimentally validated rigorous dynamic model comprises constraints in the optimization problem. A new objective function is proposed to accommodate the competing requirements of maximum yeast production and minimum ethanol formation. The objective function is maximized with iterative dynamic programming with respect to the sugar feed rate. Results prove the effectiveness of dynamic programming for solving such high-dimensional and nonlinear optimization problems, and the resulting optimal policy indicates that considerable increase in yeast production in fed-batch fermenters can be achieved while minimizing the undesired by-product, ethanol.  相似文献   

9.
10.
Transketolase from baker's yeast was covalently bound to Sepharose via one subunit. Storage in glycine buffer pH 11 entailled loss of half of the protein and a 50% decrease in the activity of the immobilized enzyme. Addition to the system of free subunits of transketolase doubled the amount of the protein attached to the matrix and restored the catalytic activity to the initial level. Thermoinactivation of the initial immobilized dimer of transketolase and the renatured dimer formed on reassociation of the immobilized subunits with the free ones was the same and considerably differed from the thermoinactivation of the immobilized subunits. The conclusion is made that the individual subunits of transketolase are catalytically active.  相似文献   

11.
The denaturation characteristics of inorganic pyrophosphatase from baker's yeast and the interaction with Cu2+ were investigated with fluorimetric methods. The position of the fluorescence emission spectrum with a maximum at 328 nm together with a quantum yield of 0.12 led to the conclusion that most of the tryptophan residues of the protein are buried in nonpolar inner regions of the molecule. The contribution of the tyrosine residues to the fluorescence of pyrophosphatase is only about 7%. Denaturation of the protein with denaturants or changes of the pH value cause a red shift of the fluorescence emission maximum. In the presence of Cu2+ ions a fluorescence quenching is observed. Thereby, a specific binding of one Cu2+ per subunit may be distinguished from further unspecific Cu2+ binding. The Cu2+ binding to the latter sites shows a time dependence according to a slow, reversible exposure of additional binding sites. This time dependent binding characteristics was also verified by following the free Cu2+ concentration with the fluorescent "metal indicator" epsilon-ADP.  相似文献   

12.
13.
When the effect of catabolite repression is eliminated Saccharomyces cerevisiae prefers an aerobic metabolism. The potential for completely aerobic catabolism exists even in circumstances where its action is limited by the oxygen available. When the oxygen absorption in the medium is adequate, yeast uses a solely oxidative metabolism for energy-yielding reactions. The changes observed in the activity of malate dehydrogenase can be described as a function of two isoenzymes, both of which are affected by oxygen; the isoenzyme participating in the glyoxylate cycle shows variations in activity similar to that observed in isocitrate lyase. NAD-linked glutamate dehydrogenase activity roughly follows that of malate dehydrogenase and isocitrate lyase; in cultivations with the same growth rate the NADP-linked dehydrogenase is insensitive to the oxygen level. The cytochromes aa3, b, and c have a clear maximum at low oxygen tension, the most sensitive being cytochrome aa3. The imbalance between cytochrome c:oxygen oxidoreductase activity and the amount of cytochrome aa3, and the correlation observed between respiration rate and the activities of cytochrome c oxidase and NADH2:cytochroine c oxidoreductase are discussed. Methods used for estimation of cytochromes are compared.  相似文献   

14.
Saccharopine dehydrogenase (N6-(glutar-2-yl)-L-ly-sine:NAD oxidoreductase (L-lysine-forming)) from baker's yeast was purified to homogenicity. The overall purification was about 1,200-fold over the crude extract with a yield of about 24%. The purified enzyme had a sedimentation coefficient (S20,w) of 3.0 S. The molecular weight determinations by sedimentation equilibrium, Sephadex G-100 gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a value of about 39,000 and, therefore, saccharopine dehydrogenase is a single polypeptide chain enzyme. A Stokes radius of 27 A and a diffusion constant of 7.9 X 10(-7) cm2 s-1 were obtained from Sephadex gel filtration chromatography. The enzyme had a high isoelectric pH of 10.1. The NH2-terminal sequence was Ala-Ala----. The enzyme possessed 3 cysteine residues/molecule; no disulfide bond was present. Incubation of saccharopine dehydrogenase with p-chloromercuribenzoate or iodoacetate resulted in complete loss of enzyme activity. Whereas the coenzyme and substrates were ineffective in protecting from inactivation by p-chloromercuribenzoate, iodoacetate inhibition was protected by excess coenzyme.  相似文献   

15.
16.
In the preceding paper (Ross, E., and Schatz, G. (1976) J. Biol. Chem. 251, 1991-1996) yeast cytochrome c1 was characterized as a 31,000 dalton polypeptide with a covalently bound heme group. In order to determine the site of translation of this heme-carrying polypeptide, yeast cells were labeled with [H]leu(be under the following conditions: (a) in the absence of inhibitors, (b) in the presence of acriflavin (an inhibitor of mitochondrial translation), or (c) in the presence of cycloheximide (an inhibitor of cytoplasmic translation). The incorporation of radioactivity into the hemeprotein was measured by immunoprecipitating it from mitochondrial extracts and analyzing it by dodecyl sulfate-polyacrylamide gel electrophoresis. Label was incorporated into the cytochrome c1 apoprotein only in the presence of acriflavin or in the absence of inhibitor, but not in the presence of cycloheximide. Cytochrome c1 is thus a cytoplasmic translation product. This conclusion was further supported by the demonstration that a cytolasmic petite mutant lacking mitochondrial protein synthesis still contained holocytochrome c1 that was indistinguishable from cytochrome c1 of wild type yeast with respect to molecular weight, absorption spectru, the presence of a covalently bound heme group, and antigenic properties. Cytochrome c1 in the mitochondria of the cytoplasmic petite mutant is firmly bound to the membrane, and its concentration approaches that typical of wild type mitochondria. However, its lability to proteolysis appeared to be increased. A mitochondrial translation product may thus be necessary for the correct conformation or orientation of cytochrome c1 in the mitochondrial inner membrane. Accumulation of cytochrome c1 protein in mitochondria is dependent on the abailability of heme. This was shown with a delta-aminolevulinic acid synthetase-deficient yeast mutant which lacks heme and any light-absorbing peaks attributable to cytochromes. Mitochondria from mutant cells grown without added delta-aminolevulinic acid contained at least 20 times less protein immunoprecipitable by cytochrome c1-antisera than mitochondria from cells grown in the presence of the heme precursor. Similarly, the respiration-deficient promitochondria of anaerobically grown wild type cells are almost completely devoid of material cross-reacting with cytochrome c1-antisera. A 105,000 X g supernatant of aerobically grown wild type cells contains a 29,000 dalton polypeptide that is precipitated by cytochrome c1-antiserum but not by nonimmune serum. This polypeptide is also present in high speed supernatants from the heme-deficient mutant or from anaerobically gorwn wild type cells. The possible identity of this polypeptide with soluble apocytochrome c1 is being investigated.  相似文献   

17.
18.
The scale-down procedure can be used to optimize and scale up fermentation processes. The first step in this procedure, a theoretical analysis of the process at a large scale, must give information about the regime, or bottle necks, ruling the process. In order to verify the theoretical results the process analysis has been applied to the fed-batch baker's yeast production at a laboratory scale. The results of this analysis are compared with results from fed-batch experiments. It was concluded that if only one mechanism is ruling the process, for instance mass transfer, the results of the analysis are quite clear. If more than one mechanism is important, for example mass transfer and liquid mixing, additional knowledge is needed to predict the behaviour of the process.Concerning the baker's yeast production, it was concluded that if oxygen limitation occurs, liquid mixing is of little importance.List of Symbols C kg/m3 concentration - C * kg/m3 saturation concentration - D m diameter - D E m2/s effective dispersion coefficient - d m holes of the sparger - F sm3/s substrate flow to the fermentor - g m/s2 gravitational acceleration - H m height - k La s–1 volumetric mass transfer coefficient based on the liquid volume - L m length - m skg/(kg·s) maintenance coefficient - OTR kg/(m3·s) oxygen transfer rate - OUR kg/(m3·s) oxygen uptake rate - r kg/(m3·s) reaction rate - t s time - V m3 volume - v m/s velocity - v sm/s superficial gas flow rate - y ijkg/kg yield of componentj oni - s–1 specific growth rate - s time constant - gm3/s gas flow rate Indices 0 value att=0 - cir liquid circulation - e ethanol - f feed concentration - g gas phase - in flow going to the fermentor - l liquid phase - m mixing - mt mass transfer - o, O2 oxygen - oc oxygen consumption - out flow coming out the fermentor - s substrate - sa substrate addition - sc substrate consumption - x biomass  相似文献   

19.
The scale-down procedure seems an adequate tool in the design, optimization and scale-up fermentation processes. The first step in this procedure is a theoretical analysis, called process analysis, which is based on characteristic times of the mechanisms which may influence the performance of the bioreactor. This analysis must give information about the behaviour of large and small scale fermentation processes. At a small scale a verification of the results of such an analysis of the fed-batch baker's yeast production is carried out.In this paper a comparison of calculated and measured characteristic times of liquid mixing and mass transfer is presented. It was concluded that the literature correlations give a rough estimation of the characteristic times and can be used in the process analysis. Depending on the kind of sparger, the medium and the scale of the reactor, more knowledge is needed about bubble coalescence in fermentation media.The volumetric oxygen transfer coefficient increased when the biomass concentration increased. Probably this is caused by the interaction between biomass and the anti-foaming agent used.List of Symbols C kg/m3 concentration - D m diameter - m2/s effective dispersion coefficient - d m holes of the sparger - g m/s2 gravitational acceleration - H m height - k L a s–1 volumetric mass transfer coefficient based on the liquid volume - L m length - m kg/kg gas liquid distribution coefficient - OTR kg/(m3 · s) oxygen transfer rate - OUR kg/(m3 · s) oxygen uptake rate - t s time - s m/s superficial gas flow rate - m length - s time constant - g m3/s gas flow rate Indices 0 value at t=0 - cal calculated - e value at t=t (end) - g gas phase - in flow going to the fermentor - l liquid phase - m mixing - mt mass transfer - O 2 oxygen - out flow coming out the fermentor  相似文献   

20.
A simple and readily reproducible procedure is presented for the preparation and purification of cytochrome c peroxidase from baker's yeast. Following autolysis of the yeast and extraction, the enzyme is collected on DEAE-cellulose at moderately high ionic strength, cluted, concentrated, and subjected to gel filtration in 0.1 m sodium acetate buffer, pH 5.0. The properties of the crude preparation make gel filtration in this buffer suitable for near-final purification of the heme protein. The enzyme is then easily crystallized by dialysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号