首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using methods of light and electron microscopy and of autoradiography, the morphology of cytoplasm in previtellogenic oocytes of tilapia mossambique was studied. Similar to other bony fishes, mitochondria at the early previtellogenic oocytes are mostly located in the perinuclear cytoplasm to be later distributed over the whole volume of growing oocytes. The Golgi complex is poorly developed. In the peripheral regions of the late previtellogenic oocytes, stickform mitochondria, pinocytotic vesicles and microvilli are observed, along with the perioocyte space formation. In the cytoplasm of previtellogenic oocytes polyribosomes appear. No differences in 3H-leucine incorporation intensity was noticed in oocytes of different previtellogenic stages. The characteristic feature of tilapia mossambique previtellogenic oocytes, in comparison with other bony fishes, is the presence of fat droplets in their cytoplasm.  相似文献   

2.
We studied the pathway of 5S RNA during oogenesis in Xenopus laevis from its storage in the cytoplasm to accumulation in the nucleus, the sequence requirements for the 5S RNA to follow that pathway, and the 5S RNA-protein interactions that occur during the mobilization of stored 5S RNA for assembly into ribosomes. In situ hybridization to sections of oocytes indicates that 5S RNA first becomes associated with the amplified nucleoli during vitellogenesis when the nucleoli are activity synthesizing ribosomal RNA and assembling ribosomes. When labeled 5S RNA is microinjected into the cytoplasm of stage V oocytes, it migrates into the nucleus, whether microinjected naked or complexed with the protein TFIIIA as a 7S RNP storage particle. During vitellogenesis, a nonribosome bound pool of 5S RNA complexed with ribosomal protein L5 (5S RNPs) is formed, which is present throughout the remainder of oogenesis. Immunoprecipitation assays on homogenates of microinjected oocytes showed that labeled 5S RNA can become complexed either with L5 or with TFIIIA. Nucleotides 11 through 108 of the 5S RNA molecule provide the necessary sequence and conformational information required for the formation of immunologically detectable complexes with TFIIIA or L5 and for nuclear accumulation. Furthermore, labeled 5S RNA from microinjected 7S RNPs can subsequently become associated with L5. Such labeled 5S RNA is found in both 5S RNPs and 7S RNPs in the cytoplasm, but only in 5S RNPs in the nucleus of microinjected oocytes. These data suggest that during oogenesis a major pathway for incorporation of 5S RNA into nascent ribosomes involves the migration of 5S RNA from the nucleus to the cytoplasm for storage in an RNP complex with TFIIIA, exchange of that protein association for binding with ribosomal protein L5, and a return to the nucleus for incorporation into ribosomes as they are being assembled in the amplified nucleoli.  相似文献   

3.
4.
Changes in the nuclear structures and their participation in RNA synthesis in the growing oocytes were followed in two species of beetles Blaps lethifera and Gnaptor spinimanus. In the oocytes of both the species, the chromosomes join into the karyosphere following the short-term lampbrush stage. A large capsule appears around the karayosphere which consists of the fibrous substance, granules and karyosphere nucleoli. The latter form in the karyosphere and contain RNP but they are not true nucleoli since they do not include 3H-uridine. RNA synthesis on the chromosomes, active at the lampbrush stage, falls markedly following their joining into the karyosphere. The oocyte nuclei of these beetles are, thus, characterized by the absence of RNA synthesizing nucleolar system and, as compared with the trophocytes, by the low level of RNA synthesis on the chromosomes.  相似文献   

5.
The content and intensity of incorporation of 3H-uridine in RNA of chromosomes, nucleoli and cytoplasm isolated by microsurgery from the salivary glands of larvae and prepupae of Chironomus thummi were studied following the incubation of salivary glands in the Cannon's medium with 3H-uridine. It was shown that during metamorphosis the content of RNA and intensity of 3H-uridine incorporation decrease in the nucleolus and cytoplasm in a prepupa, as compared with a larva, and suffer no changes in chromosomes in spite of much larger size of many puffs in a prepupa. The patterns of RNA synthesis in the salivary glands of larvae during metamorphosis are discussed.  相似文献   

6.
7.
The ovaries of the largemouth bass Micropterus salmoides, an alien and invasive species in South Africa, contain a germinal epithelium which consists of germline and somatic cells, as well as previtellogenic and late vitellogenic ovarian follicles. The ovarian follicle consists of an oocyte surrounded by follicular cells and a basal lamina; thecal cells adjacent to this lamina are covered by an extracellular matrix. In this article, we describe the Balbiani body and the polarization and ultrastructure of the cytoplasm (ooplasm) in previtellogenic oocytes. The nucleoplasm in all examined oocytes contains lampbrush chromosomes, nuclear bodies and several nucleoli near the nuclear envelope. The ultrastructure of the nucleoli is described. Numerous nuage aggregations are present in the perinuclear cytoplasm in germline cells as well as in the ooplasm. Possible roles of these aggregations are discussed. The ooplasm contains the Balbiani body, which defines the future vegetal region in early previtellogenic oocytes. It is comprised of nuage aggregations, rough endoplasmic reticulum, Golgi apparatus, mitochondria, complexes of mitochondria with nuage-like material, and lysosome-like organelles. In mid-previtellogenic oocytes, the Balbiani body surrounds the nucleus and later disperses in the ooplasm. The lysosome-like organelles fuse and transform into vesicles containing material which is highly electron dense. As a result of the fusion of the vesicles of Golgi and rough endoplasmic reticulum, the cortical alveoli arise and distribute uniformly throughout the ooplasm of late previtellogenic oocytes. During this stage, the deposition of the eggshell (zona radiata) begins. The eggshell is penetrated by canals containing microvilli and consists of the following: the internal and the external egg envelope. In the external envelope three sublayers can be distinguished.  相似文献   

8.
9.
10.
Ultrastructural and autoradiographic studies of nucleoli in soybean root meristematic cells in seedlings: (1) grown for 3 days at 25 degrees C (control), (2) grown for three days at 25 degrees C and for 4 days at 10 degrees C, and (3) grown as in (2) and recovered for 1 day at 25 degrees C were carried out. Control nucleoli had dense structure and a few small nucleolar vacuoles. Chilled plant nucleoli had less dense structure and no vacuoles. Nucleoli of plants recovered at 25 degrees C had big nucleolar vacuoles. In autoradiograms of squashed preparations, the labeling of nucleoli and cytoplasm after 20-min incubation in 3H-uridine was 5- and 6-fold stronger, respectively, in control than in chilled roots. Following recovery, the labeling of nucleoli and cytoplasm was much stronger than after chilling or even than in control roots. After 80-min postincubation in non-radioactive medium, average labeling of particular areas of cells was the highest in recovered plants which indicated intensification of rRNA synthesis, maturation and transport into cytoplasm resulting from the resumption of optimal conditions which was correlated with the appearance of big nucleolar vacuoles. In autoradiograms of semi-thin sections from roots of seedlings chilled for 4 days then recovered and incubated for 20 min in 3H-uridine, practically only extravacuolar parts of nucleoli were labeled. After 80-min postincubation, the labeling of nucleolar vacuoles was observed. Thus, during postincubation the labeled molecules were translocated from the nucleolar periphery into nucleolar vacuoles in cells where intensive transport of these molecules to the cytoplasm takes place. On the basis of these results, a hypothesis has been put forward that nucleolar vacuoles may be involved in the intensification of pre-ribosome transport outside nucleolus.  相似文献   

11.
M G Martynova 《Tsitologiia》1988,30(10):1251-1254
DNA and RNA syntheses in the heart cells of two decapod species were investigated with the aid of electron microscopic autoradiography. Isotopes were injected in the cavity of adult animals 4 hours before fixation. 3H-thymidine labeling was found in several satellite cell nuclei and in some particular epicardial cell nuclei. None of myonuclei was labeled. 3H-uridine incorporated in all the nuclei of muscle fibers. Satellite cells were labeled with 3H-uridine very slightly, if at all. Such a peculiarity of biosynthetic processes in the decapod heart satellite cell suggests their myoblastic nature similar to that of satellite cells of somatic muscles. The active 3H-thymidine uptake by the heart satellite cells of adult animals may be accounted for by the permanent growth of the decapods through their whole life span.  相似文献   

12.
The mitochondrial cloud is a prominent mass in the cytoplasm of previtellogenic oocytes of Xenopus laevis. It is shown here that the cloud contains both mitochondria and electron-dense granulofibrillar material (GFM). Using a combination of light microscopical, fluorescence, time-lapse filming, and electron microscopical techniques, the ontogeny of these components is reported and their fate is studied. It was found that the cloud is stationary in previtellogenic stages and fragments into islands of mitochondria and GFM during stage II (using the staging system of J. N. Dumont [1972) J. Morphol. 136, 153-180). These islands become localized in the peripheral cytoplasm at one pole of the stage III oocyte. By studying successive stages, GFM was followed through oogenesis and it was found localized only at the vegetal pole of stage IV and V oocytes. Furthermore, it was found that it bears a striking resemblance in position, appearance, and associations with mitochondria to the "germinal granules" of unfertilized eggs. Germinal granules have been shown by others to become incorporated into germ-line cells. It is concluded that the GFM is the precursor of this material and that the mitochondrial cloud is the site of its accumulation and localization in the previtellogenic oocyte.  相似文献   

13.
In each ovariole of Gerris remigis, nurse cells arise by mitotic divisions at the anterior end of the germarium. These cells enlarge as they move posteriorly. This size increase is possibly caused by fusion of cells, but probably by endopolyploidy as well. The nurse cells then establish connections with a central trophic core, which receives the products of subsequent nurse cell degradation. Two possible pathways of nuclear degradation are suggested: one involves the condensation of chromatin within the nucleus; the other, the release of DNA as fine granules into the cytoplasm. Cytoplasmic areas containing such DNA are also rich in proteinaceous granules, but have a meager content of RNA. The remainder of the cytoplasm of the mature nurse cells contains a high concentration of RNA, as do the nucleoli. Posteriorly the trophic core connects via nutritive cords with each developing oocyte in the prefollicular region and in the anterior vitellarium. RNA is apparently contributed to the ooplasm via the trophic stream. Patches of cytoplasmic DNA are present in the young oocytes; the origin and fate of this DNA is uncertain. During early oocyte maturation chromosomal stainability decreases, and the nucleolus enlarges. In previtellogenic stages, numerous proteinaceous bodies appear in association with the nucleolus-chromosome complex. These bodies, like the nucleolus, have only a low RNA content. They may pass to the cytoplasm, but cannot be traced with certainty. During the latter part of this period a complex population of small proteinaceous and lipid preyolk bodies accumulates peripherally in the oocyte. Definitive protein and lipid yolk are probably derived by the enlargement and inward migration of these bodies. The oocytes are each surrounded by a layer of follicle cells proliferated in the prefollicular region. These become binucleate and enlarge as the enclosed oocytes grow and elongate. RNA also increases in the nucleoli and cytoplasm of the follicle cells as they move posteriorly in the vitellarium. There is no evidence of transfer of nucleic acids or protein from the follicle cells to the oocyte. The nurse cells are therefore implicated as the major source of nucleic acids for the maturing oocyte.  相似文献   

14.
Novikoff rat hepatoma cells (subline NlSl-67) in suspension culture incorporate 3H-5-uridine into the acid-soluble nucleotide pool more rapidly than into RNA, resulting in the accumulation of labeled UTP in the cells. When labeled uridine is removed from the medium after 20 minutes or 4.75 hours of labeling, the rate of incorporation of label from the nucleotide pool into RNA decreases to less than 10% of the original rate within five to ten minutes, in spite of the presence of a large pool of labeled UTP in the cells, and incorporation ceases completely if an excess of unlabeled uridine is present during the chase. Upon addition of 14C-uridine to 3H-uridine pulse-labeled, chased cells, the 14C begins to be incorporated into RNA without delay and at a rate predetermined by the concentration of 14C-uridine in the medium and without affecting the fate of the free 3H-nucleotides labeled during the pulse-period. The results are interpreted to indicate that uridine is incorporated into at least two different pools, only one of which serves as primary source of nucleotides for RNA synthesis. During active synthesis of RNA, the latter pool of free nucleotides is very small and rapidly exhausted when uridine is removed from the medium. However, UTP accumulates in this pool when cells are labeled at 4–6°, since at this temperature RNA synthesis is blocked while uridine is still phosphorylated by the cells, and the UTP is rapidly incorporated into RNA during a subsequent ten-minute chase at 37°. From these types of experiments it is estimated that only 20–25% of the total uridine nucleotides formed in the cells from uridine in the medium is directly available for RNA synthesis and that the remainder becomes available only at a slow rate. Evidence is presented which suggests that one uridine nucleotide pool is located in the cytoplasm and another in the nucleus and that mainly the nuclear pool supplies nucleotides for RNA synthesis. The size of the latter pool is under strict regulatory control, since preincubation of the cells with 0.5 mM unlabeled uridine has little or no effect on the subsequent incorporation of 3H-uridine, although it results in an increase of the overall cellular uridine nucleotide content to at least 5 mM. Other results indicate that adenosine is also incorporated into two independent nucleotide pools, whereas the cells normally appear to possess a single thymidine nucleotide pool.  相似文献   

15.
The experiments on mice, who were intraperitoneally injected 5-3H-uridine at a dose of 100 microCi/g, have established that dark adrenal cells are distinct in faster incorporation of the labeled precursor and translocation of the newly-synthetized RNA from the nucleus into the cytoplasm, as compared to light cells. RNA synthesis and translocation into the cytoplasm are more intensive in cells of the glomerular zone. In cortical substance cells, as compared to adrenal cells, the newly-synthetized RNA translocation into the cytoplasm and RNA degeneration are accelerated.  相似文献   

16.
The fine structure, cytochemistry and autoradiography of the rod-shaped central body in the mitochondria of the slime mold, Physarum polycephalum, has been investigated. The central bodies are stained with Feulgen stain and, like the nucleoli, are stained metachromatically with azure B. At the ultrastructural level, they are composed of a semi-electron-dense axial region which is sensitive to treatment with DNase and an electron-dense peripheral region which surrounds the axial region and is sensitive to treatment with RNase. With electronmicroscopic autoradiography it has been shown that the central body and its peripheral region, after short exposure to 3H-uridine, incorporate 3H-uridine into a form, possibly RNA, which is insoluble in trichloroacetic acid and can be extracted with RNase though not with DNase. It is suggested that the central body is composed of an axial component which contains primarily DNA and a peripheral component which contains primarily RNA and that the RNA is synthesized in the central body.  相似文献   

17.
Maternal RNA of mouse eggs and embryos was labeled by exposure of growing ovarian oocytes to 3H-uridine in vivo 8 to 16 days before ovulation and fertilization. Labeled embryos from the 1-cell stage to the blastocyst stage were collected, fixed, and autoradiographs of plastic sections prepared. The observed grain density was similar in the pronuclei and in the cytoplasm of 1-cell embryos. Knowing the volumes of nucleus and cytoplasm, it was determined that 3% of the maternal RNA was found in the pronuclei. It is suggested that some of this nuclear RNA may be stable small nuclear RNAs (e.g. U1 RNA) retained from the germinal vesicle stage through meiotic maturation. During the 2-cell stage and beyond, maternal RNA is degraded and labeled precursor is reincorporated into nuclear RNA, making it difficult to accurately quantitate the amount of nuclear maternal RNA. It is known that about one third of the total maternal RNA is lost between the 8-cell and blastocyst stages. It was found that cytoplasmic grain densities in inner and outer cells of the morula and blastocyst were not significantly different. Thus, the loss of maternal RNA does not proceed more rapidly in the differentiating trophoblast than in the inner cell mass.  相似文献   

18.
Incorporation studies with 3H-uridine or 3H-adenosine showedthat germinating pea embryos synthesize all types of poly A(+)RNA, rRNA and 4–5S RNA at the early stage of germination.After the pulse labeling for 30 min, only heterodisperse RNAand 4–5S RNA appeared in the cytoplasm as labeled RNAspecies. At this time the radioactivity was associated withcytoplasmic structures heavier than 80S and RNP particles of68–70S, 52–55S, 36–38S and 20–22S whichare presumed to be free mRNP particles in plants. When the pulse-labeledembryos were incubated for a further 60 min in an isotope-freemedium, the labeled 17S and 25S rRNA emerged in the cytoplasm,together with labeled heterodisperse and 4–5S RNAs. Moreradioactivity accumulated in the regions of the polysome, 62–65Sand 38–42S particles. The results of analysis of RNAsextracted from the whole cytoplasm, polysome or subribosomalfractions indicated that small subunits of newly formed ribosomesappear more rapidly in the cytoplasm than new large subunits,which accumulate for a while as free particles in the cytoplasmthen are incorporated into polysomes. The actino-mycin treatmentwhich caused preferential inhibition of rRNA synthesis reducedthe accumulation of free, newly formed ribosome subunits andpartially permitted detection of the presumed mRNP particlesin the subribosomal region even after the chase treatment. (Received June 28, 1976; )  相似文献   

19.
The 4 and 5 S RNA containing 42 S ribonucleoprotein (RNP) particles characteristic of previtellogenic and white oocytes cannot be detected in full-grown oocytes. When full-grown oocyte RNPs are separated on sucrose gradients 4 and 5 S RNA cannot be detected in the 42 S region. However, not all of the 5 S RNA stored during early oogenesis is incorporated into ribosomes at later stages. A substantial pool (20% of the total) of 5 S RNA remains in a non-ribosome-bound fraction sedimenting at about 7 S in full-grown oocytes.  相似文献   

20.
Oocyte development in several nonmammalian species is characterized by the synthesis of large quantities of ribonucleic acids during lampbrush stages of meiosis. These are stored in the oocyte and used during later oocyte maturation and early embryogenesis. This autoradiographic study examined the incorporation and persistence of ribonucleic acid in mouse oocytes during comparable stages of development. At each age examined, fetal through juvenile, the radiolabeled RNA precursors were incorporated into mouse oocytes during the growth stages. The RNAase-digestible label appeared first over nucleoli and meiotic chromosomes, becoming cytoplasmic after 24 hours, and remaining cytoplasmic through all remaining stages. Once incorporated the label persisted during subsequent oocyte growth and maturation through preimplantation embryo stages with apparently undiminished levels. It is suggested that this persistently labeled RNA represents maternal RNA stored for use during early embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号