首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Activin A is an essential cofactor for osteoclast induction   总被引:4,自引:0,他引:4  
Recently, receptor activator of NF-kappaB ligand (RANKL) was shown to be necessary for osteoclast formation. We now report that activin A, a cytokine enriched in bone matrix and secreted by osteoblasts and osteoclasts, powerfully synergized with RANKL for induction of osteoclast-like cells (OCL) from bone marrow precursors depleted of stromal cells. Moreover, OCL formation in RANKL was virtually abolished by soluble type II A activin receptors (ActR-II(A)), suggesting that activin A is essential for OCL formation. Activin A was most effective when precursors were exposed to RANKL and activin A simultaneously: resistance to OCL-induction that occurs when precursors are pre-incubated in M-CSF was reduced. Incubation on bone matrix also enhanced the sensitivity of precursors to OCL-induction by RANKL; and this was prevented by soluble ActR-II(A). Thus, activin A in bone matrix, or released from osteoblastic or other cells, enhances the osteoclast-forming potential of precursors and synergizes with RANKL in inducing osteoclastic differentiation.  相似文献   

3.
4.
5.
6.
The outer membrane of Gram‐negative bacteria is an asymmetric lipid bilayer consisting of an essential glycolipid lipopolysaccharide (LPS) in its outer leaflet and phospholipids in the inner leaflet. Here, we show that yciM, a gene encoding a tetratricopeptide repeat protein of unknown function, modulates LPS levels by negatively regulating the biosynthesis of lipid A, an essential constituent of LPS. Inactivation of yciM resulted in high LPS levels and cell death in Escherichia coli; recessive mutations in lpxA, lpxC or lpxD that lower the synthesis of lipid A, or a gain of function mutation in fabZ that increases the formation of membrane phospholipids, alleviated the yciM mutant phenotypes. A modest increase in YciM led to significant reduction of LPS and increased sensitivity to hydrophobic antibiotics. YciM was shown to regulate LPS by altering LpxC, an enzyme that catalyses the first committed step of lipid A biosynthesis. Regulation of LpxC by YciM was contingent on the presence of FtsH, an essential membrane‐anchored protease known to degrade LpxC, suggesting that FtsH and YciM act in concert to regulate synthesis of lipid A. In summary, this study demonstrates an essential role for YciM in regulation of LPS biosynthesis in E. coli.  相似文献   

7.
Nemo-like kinases define a novel family of serine/threonine kinases that are involved in integrating multiple signaling pathways. They are conserved regulators of Wnt/Wingless pathways, which may coordinate Wnt with TGFbeta-mediated signaling. Drosophila nemo was identified through its involvement in epithelial planar polarity, a process regulated by a non-canonical Wnt pathway. We have previously found that ectopic expression of Nemo using the Gal4-UAS system resulted in embryonic lethality associated with defects in patterning and head development. In this study we present our analyses of the phenotypes of germline clone-derived embryos. We observe lethality associated with head defects and reduction of programmed cell death and conclude that nmo is an essential gene. We also present data showing that nmo is involved in regulating apoptosis during eye development, based on both loss of function phenotypes and on genetic interactions with the pro-apoptotic gene reaper. Finally, we present genetic data from the adult wing that suggest the activity of ectopically expressed Nemo can be modulated by Jun N-terminal kinase (JNK) signaling. Such an observation supports the model that there is cross-talk between Wnt, TGFbeta and JNK signaling at multiple stages of development.  相似文献   

8.
The Mixed-Lineage Leukemia (MLL) protein is a histone methyltransferase that is mutated in clinically and biologically distinctive subsets of acute leukemia. MLL normally associates with a cohort of highly conserved cofactors to form a macromolecular complex that includes menin, a product of the MEN1 tumor suppressor gene, which is mutated in heritable and sporadic endocrine tumors. We demonstrate here that oncogenic MLL fusion proteins retain an ability to stably associate with menin through a high-affinity, amino-terminal, conserved binding motif and that this interaction is required for the initiation of MLL-mediated leukemogenesis. Furthermore, menin is essential for maintenance of MLL-associated but not other oncogene induced myeloid transformation. Acute genetic ablation of menin reverses aberrant Hox gene expression mediated by MLL-menin promoter-associated complexes, and specifically abrogates the differentiation arrest and oncogenic properties of MLL-transformed leukemic blasts. These results demonstrate that a human oncoprotein is critically dependent on direct physical interaction with a tumor suppressor protein for its oncogenic activity, validate a potential target for molecular therapy, and suggest central roles for menin in altered epigenetic functions underlying the pathogenesis of hematopoietic cancers.  相似文献   

9.
Protein kinase C (PKC) is activated in response to various inflammatory mediators and contributes significantly to the endothelial barrier breakdown. However, the mechanisms underlying PKC-mediated permeability regulation are not well understood. We prepared microvascular myocardial endothelial cells from both wild-type (WT) and caveolin-1-deficient mice. Activation of PKC by phorbol myristate acetate (PMA) (100 nM) for 30 min induced intercellular gap formation and fragmentation of VE-cadherin immunoreactivity in WT but not in caveolin-1-deficient monolayers. To test the effect of PKC activation on VE-cadherin-mediated adhesion, we allowed VE-cadherin-coated microbeads to bind to the endothelial cell surface and probed their adhesion by laser tweezers. PMA significantly reduced bead binding to 78±6% of controls in WT endothelial cells without any effect in caveolin-1-deficient cells. In WT cells, PMA caused an 86±18% increase in FITC-dextran permeability whereas no increase in permeability was observed in caveolin-1-deficient monolayers. Inhibition of PKC by staurosporine (50 nM, 30 min) did not affect barrier functions in both WT and caveolin-1-deficient MyEnd cells. Theses data indicate that PKC activation reduces endothelial barrier functions at least in part by the reduction of VE-cadherin-mediated adhesion and demonstrate that PKC-mediated permeability regulation depends on caveolin-1.  相似文献   

10.
11.
RNA provides the framework for the assembly of some of the most intricate macromolecular complexes within the cell, including the spliceosome and the mature ribosome. The assembly of these complexes relies on the coordinated association of RNA with hundreds of trans-acting protein factors. While some of these trans-acting factors are RNA-binding proteins (RBPs), others are adaptor proteins, and others still, function as both. Defects in the assembly of these complexes results in a number of human pathologies including neurodegeneration and cancer. Here, we demonstrate that Silencing Defective 2 (SDE2) is both an RNA binding protein and also a trans-acting adaptor protein that functions to regulate RNA splicing and ribosome biogenesis. SDE2 depletion leads to widespread changes in alternative splicing, defects in ribosome biogenesis and ultimately complete loss of cell viability. Our data highlight SDE2 as a previously uncharacterized essential gene required for the assembly and maturation of the complexes that carry out two of the most fundamental processes in mammalian cells.  相似文献   

12.
13.
14.
15.
16.
17.
Mycobacterium tuberculosis possesses a homologue of glnE, potentially encoding a regulator of glutamine synthetase activity. We attempted to construct glnE-disrupted mutants using a two-step strategy, whereby a single-crossover strain was first isolated, followed by sacB counterselection to isolate the double-crossover strain. Of 192 sucrose-resistant colonies tested, none were mutants, although the wild-type double crossover could be easily isolated. When a second copy of the wild-type glnE was integrated into the chromosome, we could isolate both wild-type and mutant double-crossover strains. Thus, the chromosomal gene could only be replaced with a disrupted copy when another functional copy of the gene was provided, demonstrating that this gene is essential under the conditions tested.  相似文献   

18.
We cloned, from a cDNA library, an alpha-actin sequence from a salamander (Pleurodeles waltlii), which codes for the 125 COOH-terminal amino acid residues of a skeletal muscle actin (without any difference from the corresponding protein of warm blood vertebrates). An important conservation in the 3' untranslated region between this sequence and skeletal alpha-actin genes of chicken and man was noted. These results demonstrate, contrary to what was thought previously, that there exists in salamander a true skeletal alpha-actin gene. The results suggest that striated muscle actin genes in lower vertebrates could be a mosaic of cardiac and skeletal-specific amino acid residues, and that the divergence between these two types of genes is older than the NH2-terminal analysis of actins suggested previously.  相似文献   

19.
MyD88, the common adapter involved in TLR, IL-1, and IL-18 receptor signaling, is essential for the control of acute Mycobacterium tuberculosis (MTB) infection. Although TLR2, TLR4, and TLR9 have been implicated in the response to mycobacteria, gene disruption for these TLRs impairs only the long-term control of MTB infection. Here, we addressed the respective role of IL-1 and IL-18 receptor pathways in the MyD88-dependent control of acute MTB infection. Mice deficient for IL-1R1, IL-18R, or Toll-IL-1R domain-containing adaptor protein (TIRAP) were compared with MyD88-deficient mice in an acute model of aerogenic MTB infection. Although primary MyD88-deficient macrophages and dendritic cells were defective in cytokine production in response to mycobacterial stimulation, IL-1R1-deficient macrophages exhibited only a reduced IL-12p40 secretion with unaffected TNF, IL-6, and NO production and up-regulation of costimulatory molecules CD40 and CD86. Aerogenic MTB infection of IL-1R1-deficient mice was lethal within 4 wk with 2-log higher bacterial load in the lung and necrotic pneumonia but efficient pulmonary CD4 and CD8 T cell responses, as seen in MyD88-deficient mice. Mice deficient for IL-18R or TIRAP controlled acute MTB infection. These data demonstrate that absence of IL-1R signal leads to a dramatic defect of early control of MTB infection similar to that seen in the absence of MyD88, whereas IL-18R and TIRAP are dispensable, and that IL-1, together with IL-1-induced innate response, might account for most of MyD88-dependent host response to control acute MTB infection.  相似文献   

20.
Lim CJ  Cho YW  Sa JH  Lim HW  Kim HG  Kim SJ  Park EH 《Molecules and cells》2002,14(3):431-436
The genomic DNA encoding a second glutathione S-transferase (GSTII) was previously isolated from the fission yeast Schizosaccharomyces pombe. Its expression was shown to be induced by menadione, mercuric chloride, o-dinitrobenzene, and NO-generating S-nitroso-N-acetylpenicillamine using the GSTII-lacZ fusion harboring the 910 bp upstream region from the translational initiation point. In this study, the additional fusion plasmids pGST50-590 and pGST50-6R-590 were constructed to carry the 590 bp upstream region in the vectors YEp357 and YEp367R, respectively. The synthesis of beta-galactosidase from the fusion plasmid pGST50-590 was about 3-fold higher than that from the fusion plasmid pGST50-F, indicating the presence of negatively activating sequence in the -910 to approximately -590 region. It was also enhanced by the same agents, which induced the synthesis of beta-galactosidase from the fusion plasmid pGST50-F. The synthesis of beta-galactosidase from both fusion plasmids pGST50-F and pGST50-590 was enhanced by the overexpressed Pap1 protein. The synthesis of beta-galactosidase from the two YEp367R derivatives pGST50-6R-F and pGST50-6R-590 was greatly decreased in the Pap1-negative strain TP108-3C. These results propose the Pap1-dependent regulation of the GSTII gene from the fission yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号