首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PYRIN-containing Apaf1-like proteins (PYPAFs) are members of the nucleotide-binding site/leucine-rich repeat (NBS/LRR) family of signal transduction proteins. We report here that PYPAF7 is a novel PYPAF protein that activates inflammatory signaling pathways. The expression of PYPAF7 is highly restricted to immune cells, and its gene maps to chromosome 19q13.4, a locus that contains a cluster of genes encoding numerous PYPAF family members. Co-expression of PYPAF7 with ASC results in the recruitment of PYPAF7 to distinct cytoplasmic loci and a potent synergistic activation of NF-kappa B. To identify other proteins involved in PYPAF7 and ASC signaling pathways, we performed a mammalian two-hybrid screen and identified pro-caspase-1 as a binding partner of ASC. Co-expression of PYPAF7 and ASC results in the synergistic activation of caspase-1 and a corresponding increase in secretion of interleukin-1 beta. In addition, PYPAF1 induces caspase-1-dependent cytokine processing when co-expressed with ASC. These findings indicate that PYPAF family members participate in inflammatory signaling by regulating the activation of NF-kappa B and cytokine processing.  相似文献   

2.
The PYRIN domain is a recently identified protein-protein interaction domain that is found at the N terminus of several proteins thought to function in apoptotic and inflammatory signaling pathways. We report here that PYPAF1 (PYRIN-containing Apaf1-like protein 1) is a novel PYRIN-containing signaling protein that belongs to the nucleotide-binding site/leucine-rich repeat (NBS/LRR) family of signaling proteins. The expression of PYPAF1 is highly restricted to immune cells, and its gene maps to chromosome 1q44, a locus that is associated with the rare inflammatory diseases Muckle-Wells syndrome and familial cold urticaria. To identify downstream signaling partners of PYPAF1, we performed a mammalian two-hybrid screen and identified ASC as a PYRIN-containing protein that interacts selectively with the PYRIN domain of PYPAF1. When expressed in cells, ASC recruits PYPAF1 to distinct cytoplasmic loci and induces the activation of NF-kappaB. Furthermore, coexpression of PYPAF1 with ASC results in a potent synergistic activation of NF-kappaB. These findings suggest that PYPAF1 and ASC function as upstream activators of NF-kappaB signaling.  相似文献   

3.
4.
PYPAF3 is a member of the PYRIN-containing apoptotic protease-activating factor-1-like proteins (PYPAFs, also called NALPs). Among the members of this family, PYPAF1, PYPAF5, PYPAF7, and NALP1 have been shown to induce caspase-1-dependent interleukin-1beta secretion and NF-kappaB activation in the presence of the adaptor molecule ASC. On the other hand, we recently discovered that PYNOD, another member of this family, is a suppressor of these responses. Here, we show that PYPAF3 is the second member that inhibits caspase-1-dependent interleukin-1beta secretion. In contrast, PYPAF2/NALP2 does not inhibit this response but rather inhibits the NF-kappaB activation that is induced by the combined expression of PYPAF1 and ASC. Both PYPAF2 and PYPAF3 mRNAs are broadly expressed in a variety of tissues; however, neither is expressed in skeletal muscle, and only PYPAF2 mRNA is expressed in heart and brain. They are also expressed in many cell lines of both hematopoietic and non-hematopoietic lineages. Stimulation of monocytic THP-1 cells with lipopolysaccharide or interleukin-1beta induced PYPAF3 mRNA expression. Furthermore, the stable expression of PYPAF3 in THP-1 cells abrogated the ability of the cells to produce interleukin-1beta in response to lipopolysaccharide. These results suggest that PYPAF3 is a feedback regulator of interleukin-1beta secretion. Thus, PYPAF2 and PYPAF3, together with PYNOD, constitute an anti-inflammatory subgroup of PYPAFs.  相似文献   

5.
6.
7.
Human intestinal macrophages contribute to tissue homeostasis in noninflamed mucosa through profound down-regulation of pro-inflammatory cytokine release. Here, we show that this down-regulation extends to Toll-like receptor (TLR)-induced cytokine release, as intestinal macrophages expressed TLR3–TLR9 but did not release cytokines in response to TLR-specific ligands. Likely contributing to this unique functional profile, intestinal macrophages expressed markedly down-regulated adapter proteins MyD88 and Toll interleukin receptor 1 domain-containing adapter-inducing interferon β, which together mediate all TLR MyD88-dependent and -independent NF-κB signaling, did not phosphorylate NF-κB p65 or Smad-induced IκBα, and did not translocate NF-κB into the nucleus. Importantly, transforming growth factor-β released from intestinal extracellular matrix (stroma) induced identical down-regulation in the NF-κB signaling and function of blood monocytes, the exclusive source of intestinal macrophages. Our findings implicate stromal transforming growth factor-β-induced dysregulation of NF-κB proteins and Smad signaling in the differentiation of pro-inflammatory blood monocytes into noninflammatory intestinal macrophages.  相似文献   

8.
9.
Genes encoding proteins with PYRIN/PAAD/DAPIN domains, a nucleotide binding fold (NACHT), and leucine rich repeats have recently been recognized as important mediators in autoimmune inflammatory disorders. Here we characterize the expression and function of a member of the PYRIN and NACHT domain (PAN) family, PAN1 (also known as NALP2 and PYPAF2). PAN1 protein expression is regulated by lipopolysaccharide (LPS) and interferons (IFNbeta and IFNgamma) in THP-1 macrophage cells. In gene transfection studies PAN1 manifests an inhibitory influence on NF-kappaB activation induced by various pro-inflammatory stimuli, including tumor necrosis factor TNFalpha and interleukin-1beta (IL-1beta). Gene transfer-mediated elevations in PAN1 protein also suppressed activation of IkappaB kinases induced by inflammatory cytokines. Conversely, reducing endogenous levels of PAN1 using small interfering RNA enhanced LPS-induced production of ICAM-1 (intercellular adhesion molecule 1), an NF-kappaB-dependent gene. We also show here that PAN1 binds via its PYRIN domain to ASC, an adapter protein involved in caspase-1 activation. This binding is disrupted by mutation of the alpha1 helix of ASC. In gene transfer experiments PAN1 enhances caspase-1 activation and IL-1beta secretion in collaboration with ASC. Conversely, reducing endogenous levels of PAN1 using small interfering RNA significantly reduced LPS-induced secretion of IL-1beta in monocytes. We propose that PAN1 functions as a modulator of the activation of NF-kappaB and pro-caspase-1 in macrophages.  相似文献   

10.
MEKK3 serves as a critical intermediate signaling molecule in lysophosphatidic acid-mediated nuclear factor-κB (NF-κB) activation. However, the precise regulation for MEKK3 activation at the molecular level is still not fully understood. Here we report the identification of two regulatory phosphorylation sites at Thr-516 and Ser-520 within the kinase activation loop that is essential for MEKK3-mediated IκB kinase β (IKKβ)/NF-κB activation. Substitution of these two residues with alanine abolished the ability of MEKK3 to activate IKKβ/NF-κB, whereas replacement with acidic residues rendered MEKK3 constitutively active. Furthermore, substitution of these two residues with alanine abolished the ability of MEKK3 to mediate lysophosphatidic acid-induced optimal IKKβ/NF-κB activation.  相似文献   

11.
12.
The early host response to viral infections involves transient activation of pattern recognition receptors leading to an induction of inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Subsequent activation of cytokine receptors in an autocrine and paracrine manner results in an inflammatory cascade. The precise mechanisms by which viruses avert an inflammatory cascade are incompletely understood. Nuclear factor (NF)-κB is a central regulator of the inflammatory signaling cascade that is controlled by inhibitor of NF-κB (IκB) proteins and the IκB kinase (IKK) complex. In this study we show that murine cytomegalovirus inhibits the inflammatory cascade by blocking Toll-like receptor (TLR) and IL-1 receptor-dependent NF-κB activation. Inhibition occurs through an interaction of the viral M45 protein with the NF-κB essential modulator (NEMO), the regulatory subunit of the IKK complex. M45 induces proteasome-independent degradation of NEMO by targeting NEMO to autophagosomes for subsequent degradation in lysosomes. We propose that the selective and irreversible degradation of a central regulatory protein by autophagy represents a new viral strategy to dampen the inflammatory response.  相似文献   

13.
14.
Guo RW  Yang LX  Li MQ  Liu B  Wang XM 《Peptides》2006,27(12):3269-3275
Angiotensin II (Ang II) is the main active peptide of the renin–angiotensin system (RAS), producing a number of inflammatory mediators that lead to endothelial dysfunction and the progression of atherosclerosis. Ang II-induced NF-κB nuclear translocation plays a pivotal role in this response. This study examines the NF-κB activation mechanism elicited by Ang II in human umbilical vein endothelial cells (HUVEC). Electrophoretic mobility shift assays and Western blotting revealed that Ang II, signaling via AT1, produces a time-dependent increase in NF-κB DNA binding and IκB degradation. These results also demonstrate that Ang II leads to MAPK phosphorylation and p38MAPK pathway-induced NF-κB activation. Furthermore, AT1 is required for p38MAPK phosphorylation induced by Ang II. This study provides evidence that Ang II elicits NF-κB activation via the p38MAPK pathway in HUVEC.  相似文献   

15.
16.
Mycoepoxydiene (MED) is a polyketide isolated from a marine fungus associated with mangrove forests. MED has been shown to be able to induce cell cycle arrest and cancer cell apoptosis. However, its effects on inflammatory response are unclear. Herein we showed that MED exhibited inhibitory effect on inflammatory response induced by lipopolysaccharide (LPS). MED significantly inhibited LPS-induced expression of pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and nitric oxide (NO) in macrophages. MED inhibited LPS-induced nuclear translocation of nuclear factor (NF)-κB (NF-κB) p65, IκB degradation, IκB kinase (IKK) phosphorylation, and the activation of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38, suggesting that MED blocks the activation of both NF-κB and mitogen-activated protein kinase (MAPK) pathways. Furthermore, the effects of MED on LPS-induced activation of upstream signaling molecules such as transforming growth factor-β–activated kinase 1 (TAK1), tumor necrosis factor receptor-associated factor 6 (TRAF6) and IL-1 receptor associated kinases1 (IRAK1) were investigated. MED significantly inhibited TAK1 phosphorylation and TRAF6 polyubiquitination, but not IRAK1 phosphorylation and TRAF6 dimerization, indicating that MED inhibits LPS-induced inflammatory responses at least in part through suppression of TRAF6 polyubiquitination. Moreover, MED protected mice from LPS-induced endotoxin shock by reducing serum inflammatory cytokines. These results suggest that MED is a potential lead compound for the development of a novel nonsteroidal anti-inflammatory drug.  相似文献   

17.
18.

Background

Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages.

Methodology/Principal Findings

Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages.

Conclusions/Significance

These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways.  相似文献   

19.
PYRIN- and CARD-containing proteins belong to a recently identified protein family involved in the regulation of apoptosis and inflammatory processes. Variations in the gene products of the family members PYPAF1 and NOD2/CARD15 have been associated with several autoinflammatory diseases. We could identify the mouse orthologs of PYPAF1, PYPAF5, NOD1, NOD2 and the rat ortholog of PYPAF5. Intriguingly, we found that PYPAF5 has been reported previously not only as regulator of NF-kappaB and caspase-1, but also as angiotensin II and vasopressin receptor. In particular, based on a comprehensive sequence analysis, we propose a structural model for this hormone receptor that is different from the model suggested previously.  相似文献   

20.
Recently, a role for NF-κB in upregulation of proteolytic systems and protein degradation has emerged. Reactive nitrogen species (RNS) have been demonstrated to induce NF-κB activation. The aim of this study was to investigate whether RNS caused increased proteolysis in skeletal muscle cells, and whether this process was mediated through the activation of NF-κB. Fully differentiated L6 myotubes were treated with NO donor SNAP, peroxynitrite donor SIN-1, and authentic peroxynitrite, in a time-dependent manner. NF-κB activation, the activation of the ubiquitin-proteasome pathway and matrix metalloproteinases, and the levels of muscle-specific proteins (myosin heavy chain and telethonin) were investigated under the conditions of nitrosative stress. RNS donors caused NF-κB activation and increased activation of proteolytic systems, as well as the degradation of muscle-specific proteins. Antioxidant treatment, tyrosine nitration inhibition, and NF-κB molecular inhibition were proven effective in downregulation of NF-κB activation and slowing down the degradation of muscle-specific proteins. Peroxynitrite, but not NO, causes proteolytic system activation and the degradation of muscle-specific proteins in cultured myotubes, mediated through NF-κB. NF-κB inhibition by antioxidants, tyrosine nitration, and molecular inhibitors may be beneficial for decreasing the extent of muscle damage induced by RNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号