首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The observed equilibrium constants (Kobs) of the creatine kinase (EC 2.7.3.2), myokinase (EC 2.7.4.3), glucose-6-phosphatase (EC 3.1.3.9), and fructose-1,6-diphosphatase (EC 3.1.3.11) reactions have been determined at 38 degrees C, pH 7.0, ionic strength 0.25, and varying free magnesium concentrations. The equilibrium constant (KCK) for the creatine kinase reaction defined as: KCK = [sigma ATP] [sigma creatine] divided by ([sigma ADP] [sigma creatine-P] [H+]) was measured at 0.25 ionic strength and 38 degrees C and was shown to vary with free [Mg2+]. The value was found to be 3.78 x 10(8) M-1 at free [Mg2+] = 0 and 1.66 x 10(9) M-1 at free [Mg2+] = 10(-3) M. Therefore, at pH 7.0, the value of Kobs, defined as Kobs = KCK[H+] = [sigma ATP] [sigma creatine] divided by ([sigma ADP] [sigma creatine-P] was 37.8 at free [Mg2+] = 0 and 166 at free [Mg2+] = 10(-3) M. The Kobs value for the myokinase reaction, 2 sigma ADP equilibrium sigma AMP + sigma ATP, was found to vary with free [Mg2+], being 0.391 at free [Mg2+] = 0 and 1.05 at free [Mg2+] = 10(-3) M. Taking the standard state of water to have activity equal to 1, the Kobs of glucose-6-P hydrolysis, sigma glucose-6-P + H2O equilibrium sigma glucose + sigma Pi, was found not to vary with free [Mg2+], being 110 M at both free [Mg2+] = 0 and free [Mg2+] = 10(-3) M. The Kobs of fructose-1,6-P2 hydrolysis, sigma fructose-1,6-P2 equilibrium sigma fructose-6-P + sigma Pi, was found to vary with free [Mg2+], being 272 M at free [Mg2+] = 0 and 174 M at free [Mg2+] = 0.89 x 10(-3) M.  相似文献   

2.
In C6 astrocytoma cells respiring with glucose, 40% of the total production of ATP was provided by glycolysis. Anaerobiosis in the presence of glucose, reduced ATP synthesis by approximately 50%, increased lactate production by 30% and caused a 3-fold decline in [creatine phosphate]/[creatine] and consequently [ATP]free[ADP]free. There was no change in [K+]i which suggests that glycolytic production of ATP provides sufficient energy to ensure normal operation of the Na+/K+ pump. In the absence of glucose, [creatine phosphate]/[creatine] declined to less than 0.1 in 15 min and there was a loss of K+ from cells. A comparison of delta GATP and delta GNa,K under aerobic conditions with and without glucose, showed the former to be larger by 1 - 2 kcal. However, under O2-limited, glucose-restricted conditions delta GATP fell below the level necessary to maintain operation of the Na+/K+ pump and led to a collapse in ionic gradients.  相似文献   

3.
The observed equilibrium constants (Kobs) of the P-choline hydrolysis reaction have been determined under physiological conditions of temperature (38 degrees) and ionic strength (0.25 M) and physiological ranges of pH and free [Mg2+]. Using sigma and square brackets to indicate total concentrations: (see article.) The value of Kobs has been found to be relatively insensitive to variations in pH and free [Mg2+]. At pH 7.0 and taking the standard state of liquid water to have unit activity ([H2O] = 1), Kobs = 26.6 M at free [Mg2+] = 0 [epsilon G0obs = -2.03 kcal/mol(-8.48 kJ/mol)], 26.8 M at free [Mg2+] = 10(-3) M, and 28.4 M at free [Mg2+] = 10(-2) M. At pH 8.0, Kobs = 18.8 M at free [Mg2+] = 0, 19.2 M at free [Mg2+] = 10(-3), and 22.2 M at free [Mg2+] = 10(-2) M. These values apply only to situations where choline and Pi concentrations are both relatively low (such as the conditions found in most tissues). At higher concentrations of phosphate and choline, the value of Kobs becomes significantly increased since HPO42- complexes choline weakly (association constant = 3.3 M-1). The value of K at 38 degrees and I = 0.25 M is calculated to be 16.4 +/- 0.3 M [epsilonG0 = 1.73 kcal/mol (-7.23 kJ/mol)]. The K for the P-choline hydrolysis reaction has been combined with the K for the ATP hydrolysis reaction determined previously under physiological conditions to calculate a value of 4.95 X 10(-3 M [deltaG0 j.28 kcal/mol (13.7 kJ/mol] for the K of the choline kinase reaction (EC 2.7.1.32), an important step in phospholipid metabolism: (see article.) Likewise, values for Kobs for the choline kinase reaction at 38 degrees, pH 7.0, and I = 0.25 M have been calculated to be 5.76 X 10(4) [deltaG0OBS = -6.77 KCAL/MOL (-28.3 KJ/mol)] at [Mg2+] = 0; 1.24 X 10(4) [deltaG0obs = -5.82 kcal/mol (-24.4 kJ/mol)] at [Mg2+] = 10(-3) M and 8.05 X 10(3) [delta G0obs = -5.56 kcal/mol (-23.3 kJ/mol)] at [Mg2+ = 10(-2) M. Attempts to determine the Kobs of the choline kinase reaction directly were unsuccessful because of the high value of the constant. The results indicate that in contrast to the high deltaG0obs for the hydrolysis of the ester bond of acetylcholine, the deltaG0obs for the hydrolysis of the ester bond of P-choline is quite low, among the lowest known for phosphate ester bonds of biological interest.  相似文献   

4.
The purpose of this study was to compare changes in ions and metabolites in four different rat hindlimb muscles in response to intense swimming exercise in vivo (263 +/- 33 s) (SWUM), and to 5 min (300 s) of tetanic electrical stimulation of artificially perfused rat hindlimbs (STIM). With both swimming and electrical stimulation, soleus (SOL) contents of creatine phosphate (CP), ATP, and glycogen changed the least, whereas the largest decreases in these metabolites occurred in the white gastrocnemius (WG). Lactate (La-) accumulation and glycogen breakdown were significantly greater in SWUM hindlimb muscles compared with STIM. The high arterial La- concentration [( La-] = 20 meq.l-1) in SWUM may have contributed to elevated muscle [La-], whereas one-pass perfusion kept arterial [La-] below 2 meq.l-1 in STIM. In SWUM, intracellular [Na+] increased significantly in the plantaris (PL), red gastrocnemius (RG), and WG, but not in SOL. [Cl-] increased, and [K+], [Ca2+], and [Mg2+] decreased in all muscles. In STIM, intracellular [K+], [Mg2+], and [Ca2+] decreased significantly, whereas [Na+] and [Cl-] increased in all muscles. Differences in the magnitude of ion and fluid fluxes between groups can be explained by the different methods of hindlimb perfusion. In conclusion, STIM is a useful model of in vivo energy metabolism and permits mechanisms of transsarcolemmal ion movements to be studied.  相似文献   

5.
Kinetic regularities of the reaction of Ca2+-independent Mg2+-dependent enzymatic hydrolysis of ATP catalyzed by the so-called "basal" Mg2+-ATPase localized in the plasmatic membrane of the uterus smooth-muscle cells have been studied using the methods of kinetic analysis performed under the equilibrium conditions. The analysis was based on the study of the concentration dependence of initial velocity of nucleoside triphosphate hydrolysis in EGTA-containing medium under the change of general concentrations of ATP [ATP]o and Mg2+[Mg2+]o in conditions of their equimolar ratio ([ATP]o/ [Mg2+]o)= 1; here the ratio between the concentrations of free reagents ([ATP4-]o/[Mg2+]o) was equal to 1.25. The obtained concentration dependence was interpreted in terms of two practically possible alternative mechanisms of Mg2+-dependent ATP-hydrolase enzymatic reaction. Mechanism I. Two separate independent centres of Mg ions and ATP binding by the enzymatic protein are supposed to exist, while Mg2+-dependent ATP-hydrolase enzymatic reaction proceeds independent of the equilibrium reaction of Mg ions chelatization of muscleside triphosphate. Mechanism II. The existence of the only centre of the chelate complex Mg2+ATP2- binding is postulated on the enzymatic protein; this process is also realized independent of the binding of Mg2+ and ATP-hydralase reaction catalized by it.  相似文献   

6.
We have utilized multinuclear NMR spectroscopy to examine the relationship between cytosolic free Ca2+ ([Ca2+]in), free Mg2+ ([Mg2+]in) and intracellular Na+ ([Na+]in) levels of the intact thoracic aorta and primary hypertension using the Wistar-Kyoto and Sprague-Dawley rats as controls and the spontaneously hypertensive rat as a model for genetic hypertension. Cytosolic free [Ca2+] was measured using 19F NMR of the intracellular Ca2+ indicator 5,5'-difluoro-1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, free [Mg2+] using the 31P resonances of intracellular ATP, and intracellular [Na+] by 23Na NMR in combination with the extracellular shift reagent dysprosium tripolyphosphate. We have found that both the [Na+]in and [Ca2+]in levels were significantly increased in the hypertensive animals relative to normotensive controls (p less than 0.01). Mean systolic blood pressures (using tail cuff method) of control and hypertensive rats were 123 +/- 8 mm Hg (mean +/- 2 S.E., n = 7) and 159 +/- 6 mm Hg (mean +/- 2 S.E., n = 7), respectively. [Na+]in and [Ca2+]in were 21.9 +/- 6.4 mM (mean +/- 2 S.E., n = 7) and 277 +/- 28 nM (mean +/- 2 S.E., n = 5) for the spontaneously hypertensive rats versus 10.1 +/- 1.8 mM (mean +/- 2 S.E., n = 7) and 151 +/- 26 nM (mean +/- 2 S.E., n = 5) for control rats, respectively. A slight difference observed between intracellular free Mg2+ levels in hypertensives (180 +/- 38 microM, mean +/- 2 S.E., n = 4) and controls (246 +/- 76 microM, mean +/- 2 S.E., n = 4) was not statistically significant (p greater than 0.1). These data indicate alterations in the cell membrane ion transport function of the aortic smooth muscle in primary hypertension.  相似文献   

7.
Steady-state kinetics of the action of mung bean phosphoglycerate kinase have been investigated using 3-phosphoglycerate and ATP as substrates in the presence of Mg2+ ions. Keeping a constant and high Mg2+ concentration and varying the concentration of one of the substrates (ATP or 3-phosphoglycerates) at several fixed concentrations of the other substrate (3-phosphoglycerate or ATP), the Km values of Mg.ATP2- and 3-phosphoglycerate were found to be 0.42 and 0.60 mM, respectively. These values are independent of the concentration of the other substrate. A limiting value of Vmax, where the enzyme is saturated with both the substrates, was found to be 39.4 mumoles product formed per min per mg enzyme protein. This corresponds to a turnover number equal to 31.5 sec-1 (for molecular weight of the enzyme equal to 48,000). If [Mg2+] and [ATP4-] are held equal and varied together at several fixed concentrations of 3-phosphoglycerate, deviations from Michaelis-Menten kinetics (non-linear Lineweaver-Burk plots) are observed at lower values of ATP4- and Mg2+ (less than 0.1 mM), giving rise to apparent sigmoidicity in the rate versus [ATP4-] plots. It has been suggested that the real substrate for this enzyme is the Mg.ATP2- complex (and not free ATP4-). The complex dissociates at lower values of [Mg2+] and [ATP4-]. The resulting disproportionate decrease in the concentration of the complex brings about a steeper fall in the rate of reaction than is required by the Michaelis-Menten equation, giving rise to an apparent sigmoidicity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The secretion of parathyroid hormone (PTH) is suppressed in bovine parathyroid cells by raised extracellular [Ca2+], and 12-0-tetradecanoyl-phorbol-13-acetate (TPA) stimulates the release of PTH from cells suppressed by high extracellular [Ca2+]. Extracellular and cytosolic free [Ca2+] are proportionally related in intact cells. To assess the role of cytosolic free [Ca2+] on PTH secretion, bovine parathyroid cells were rendered permeable by brief exposure to an intense electric field. PTH secretion was comparable at 40 nM, 500 nM, 5 microM, 28 microM, 0.5 mM and 2 mM [Ca2+] (release of total cellular PTH 3.7 +/- 0.5%, 3.9 +/- 0.4%, 3.4% +/- 0.3%, 3.9 +/- 0.4%, 3.1 +/- 0.3%, 3.5 +/- 0.7%, respectively), but the secretion was stimulated twofold (P less than 0.05 vs. control) in a dose and ATP dependent manner with TPA (100 nM) and cyclic AMP (1 mM). As a result, free [Ca2+] in the range of those observed in intact cells during regulation of PTH secretion by changes of extracellular [Ca2+] did not affect the release of PTH in permeabilized cells. The [Ca2+] independent stimulation of PTH release by TPA and cyclic AMP indicates that changes of cytosolic free [Ca2+] may represent a secondary event not related to the regulation of PTH secretion.  相似文献   

9.
The concentrations of free magnesium, [Mg(2+)](free), [H(+)], and [ATP] are important in the dehydration of red blood cells from patients with sickle cell anemia, but they are not easily measured. Consequently, we have developed a rapid, noninvasive NMR spectroscopic method using the phosphorus chemical shifts of ATP and 2,3-diphosphoglycerate (DPG) to determine [Mg(2+)](free) and pH(i) simultaneously in fully oxygenated whole blood. The method employs theoretical equations expressing the observed chemical shift as a function of pH, K(+), and [Mg(2+)](free), over a pH range of 5.75-8.5 and [Mg(2+)](free) range 0-5 mm. The equations were adjusted to allow for the binding of hemoglobin to ATP and DPG, which required knowledge of the intracellular concentrations of ATP, DPG, K(+), and hemoglobin. Normal oxygenated whole blood (n = 33) had a pH(i) of 7.20 +/- 0.02, a [Mg(2+)](free) of 0.41 +/- 0.03 mm, and [DPG] of 7.69 +/- 0.47 mm. Under the same conditions, whole sickle blood (n = 9) had normal [ATP] but significantly lower pH(i) (7.10 +/- 0.03) and [Mg(2+)](free) (0.32 +/- 0.05 mm) than normal red cells, whereas [DPG] (10.8 +/- 1.2 mm) was significantly higher. Because total magnesium was normal in sickle cells, the lower [Mg(2+)](free) could be attributed to increased [DPG] and therefore greater magnesium binding capacity of sickle cells.  相似文献   

10.
Longitudinal muscle strips dissected from tenia cecum of guinea pig were loaded with the Mg2+ indicator, furaptra, and the relation between the fluorescent ratio signal (R) and cytoplasmic free Mg2+ concentration ([Mg2+]i) was studied in smooth muscle cells at 25 degrees C. After the application of ionophores (4-bromo-A23187, monensin, and nigericin), a small immediate offset of R (deltaRjump) was followed by a slow change in R (deltaRslow), which reached a steady level within 2-5 h. The deltaRjump was independent of Mg2+ concentration in solution ([Mg2+]o), and was thought to be unrelated to the change in [Mg2+]i. The direction of the deltaRslow depended on [Mg2+]o with a reversal at approximately 1 mM [Mg2+]o. The intracellular calibration curve was constructed from the steady levels of deltaRslow, and the dissociation constant was 5.4 mM. With the intracellular calibration curve and correction for the deltaRjump, basal [Mg2+], was estimated to be 0.98 +/- 0.05 mM (mean +/- SE, n = 12). When the same calibration was applied to A7r5 cells and rat ventricular myocytes, estimates of basal [Mg2+]i of these cells were 0.74 +/- 0.02 mM (n = 33) and 1.13 +/- 0.06 mM (n = 9), respectively. These results suggest that the basal [Mg2+] level is approximately 1 mM at least in some types of smooth muscle cells, as generally found in striated muscles.  相似文献   

11.
The Gibbs-Donnan near-equilibrium system of heart   总被引:3,自引:0,他引:3  
The gradients of the major inorganic ions across the plasma membrane of heart were examined to determine the factors controlling the extent and direction of the changes induced during injury, certain diseases, and electrolyte disturbances. The ionic environment was altered by changing only the concentration of inorganic phosphate, [sigma Pi]o, from 0 to 1.2 to 5 mM in the Krebs-Henseleit buffer perfusing working rat hearts. Raising [sigma Pi]o from 1.2 to 5 mM resulted in a decrease in total Mg2+ content and calculated free cytosolic [Mg2+] from 0.44 to 0.04 mM, conversion of 4 mmol of MgATP2- to ATP4- and a decrease in measured intracellular [Cl-]i from 41 to 16 mM. At all levels of [sigma Pi]o, both the [Na+]i and [K+]i were invariant at about 3 mM and 130 mM, respectively, as was the energy of hydrolysis of the terminal phosphate bond of sigma ATP, delta GATP Hydr, of -13.2 kcal/mol. The relationship maintained between the ions on both sides of the plasma membrane by the 3Na+/2K(+)transporting ATPase (EC 3.6.1.37) and an open K+ channel was: (formula; see text) The energy of the gradients of the other inorganic ions across the plasma membrane, delta G[ion]o/i, exhibited three distinct quanta of energy derived from the prime quantum of delta GATP Hydr of -13.2 kcal/mol. The second quantum was about one-third of delta GATP Hydr or +/- 4.4 kcal/mol and comprised the delta G[Na+]o/i, delta G[Mg2+]o/i, and delta G[HPO42-]o/i. These results indicated near-equilibrium was achieved by the reactants of the 3Na+/2K(+)-ATPase, the K+ channel, the Na(+)-Pi co-transporter, and a postulated net Mg2+/H2PO4- exchanger. The third quantum was one-third of delta G[Na+]o/i or about +/- 1.5 kcal/mol and comprised delta G[H+]o/i, delta G[HCO3-]o/i, and delta G[Cl-]o/i. The delta G[K+]o/i was 0, indicating near-equilibrium between the chemical energy of [K+]o/i and the E across the plasma membrane of -83 mV. It is concluded that the gradients of the major inorganic ions across the plasma membrane and the potential across that membrane constitute a Gibbs-Donnan equilibrium system catalyzed by transport enzymes sharing common substrates. The chemical and electrical energies of those gradients are equal in magnitude and opposite in sign to the chemical energy of ATP hydrolysis.  相似文献   

12.
Thin strips of guinea pig tenia cecum were loaded with the Mg2+ indicator furaptra, and the indicator fluorescence signals measured in Ca2+-free condition were converted to cytoplasmic-free Mg2+ concentration ([Mg2+]i). Lowering the extracellular Na+ concentration ([Na+]o) caused a reversible increase in [Mg2+]i, consistent with the inhibition of Na+ gradient-dependent extrusion of cellular Mg2+ (Na+-Mg2+ exchange). Curve-fitting analysis indicated that the relation between [Na+]o and the rate of rise in [Mg2+], had a Hill coefficient of approximately 3, a [Na+]o at the half-maximal rate of rise of approximately 30 mM, and a maximal rate of 0.16 +/- 0.01 microM/s (mean +/- SE, n = 6). Depolarization with 56 mM K+ shifted the curve slightly toward higher [Na+]o without significantly changing the maximal rate, suggesting that the Na+-Mg2+ exchange was inhibited by depolarization. The maximal rate would correspond to a flux of 0.15-0.4 pmol/cm2/s, if cytoplasmic Mg2+ buffering power (defined as the ratio of the changes in total Mg2+ and free Mg2+ concentrations) is assumed to be 2-5. Ouabain (1-5 microM) increased the intracellular Na+ concentration, as assessed with fluorescence of SBFI (sodium-binding benzofuran isophthalate, a Na+ indicator), and elevated [Mg2+]i. In ouabain-treated preparations, removal of extracellular Na+ rapidly increased [Mg2+]i, with an initial rate of rise roughly proportional to the degree of the Mg2+ load, and, probably, to the Na+ load caused by ouabain. The enhanced rate of rise in [Mg2+]i (up to approximately 1 microM/s) could be attributed to the Mg2+ influx as a result of the reversed Na+-Mg2+ exchange. Our results support the presence of a reversible and possibly electrogenic Na+-Mg2+ exchange in the smooth muscle cells of tenia cecum.  相似文献   

13.
Binding of S-adenosylhomocysteine to hydroxyindole O-methyltransferase   总被引:1,自引:0,他引:1  
Mg2+-selective microelectrodes have been used to measure the intracellular free Mg2+ concentration in frog skeletal muscle fibers. Glass capillaries with a tip diameter of less than 0.4 micron were backfilled with the Mg2+ sensor, ETH 1117. In the absence of interfering ions, they gave Nernstian responses between 1 and 10 mM free Mg2+. In the presence of an ionic environment resembling the myoplasm, the microelectrode response was sub Nernstian (18-24 mV) but still useful. The electrodes were calibrated before and after muscle-fiber impalements . In quiescent fibers from sartorius muscle (Rana pipiens), with resting membrane potentials not less than -82 mV, the intracellular free Mg2+ concentration was 3.8 +/- 0.41 (S.E.) mM (n = 58) at 22 degrees C. No significant change in the intracellular free Mg2+ was observed following extensive (approx. 6 h) incubation in Mg2+-free media. Increasing the external concentration of magnesium from 4 to 20 mM (approx. 15 min) produced a slow and small enhancement (1.8 mM) of [Mg2+]i, which was fully reverted when the divalent cation was removed from the bathing solution. No change in ionic magnesium resting concentration was observed when the muscle fibers were treated either with caffeine 3 mM or with Na+-free solutions. In depolarized muscle fibers (-23 +/- 2.7 mV) treated with 100 mM K+, the myoplasmic [Mg2+] was 3.7 +/- 0.45 (S.E.) mM, n = 6, immediately after the spontaneous relaxation of the contracture. Similar determinations in muscle fibers during stimulation at low frequency (5 Hz), and after fatigue development, showed no changes in the concentration of free cytosolic Mg2+. These results point out that [Mg2+]i is not modified under these three different experimental conditions.  相似文献   

14.
The effects of Mg2+, K+ and ATP on a H-ATPase activity from a native plasmalemma fraction of oat roots were explored at 20 degrees C and pH 6.5. In the presence of 3 mM ATP and no K+, H-ATPase activity vs. [Mg2+] approached a monotonic activation but it became biphasic, with a decline above 3 mM Mg2+, in the presence of 20 mM K+. Mg2+ inhibition occurred also in K-free solutions when [ATP] was lowered to 0.05 mM. Also, an apparent monotonic H-ATPase activation by [K+] at 3.0 mM ATP was transformed in biphasic (inhibition by high [K+]) when [ATP] was reduced to 0.05 mM. The best fits of the ATP stimulation curves of hydrolysis satisfied the sum of two Michaelian functions where that with higher affinity had lower Vmx. Taking into consideration all conditions of activity assay, the high-affinity component (1) had a Km about 11-16 microM and a Vmx around 0.14-0.28 mumol Pi/mg per min whereas that with lower affinity (2) had a Km of 220-540 microM and a Vmx of 0.5-1.0 mumol Pi/mg per min. Km2 was markedly affected by the [K+] and [Mg2+]; at optimal concentrations of these cations (1 mM Mg2+ and 10 mM K+) it had a value of 235 +/- 24 microM which was increased to 540 +/- 35 microM at 20 mM [Mg2+] and 60 mM [K+]. In addition, Vmx1 was reduced to about a half when the concentrations of Mg2+ and K+ were increased to inhibitory levels. These results could be explained by the existence of two different enzymes or one enzyme with two ATP sites. In the second case, we could not tell at this stage if both are catalytic or one is regulatory.  相似文献   

15.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

16.
Measurements have been made of cytoplasmic pH, (pHi) and free Mg2+ concentration, ( [Mg2+]i), in pig and mouse lymphocytes. pHi was measured in four ways: by a digitonin null-point technique; by direct measurement of the pH of freeze-thawed cell pellets; from the 31P nuclear magnetic resonance (NMR) spectrum of intracellular inorganic phosphate; and by the use of a newly synthesized, intracellularly- trappable fluorescent pH indicator. In HEPES buffered physiological saline with pH 7.4 at 37 degrees C, pHi was close to 7.0. Addition of physiological levels of HCO3- and CO2 transiently acidified the cells by approximately 0.1 U. Mitogenic concentrations of concanavalin A (Con A) had no measurable effect on pH in the first hour. [Mg2+]i was assessed in three ways: (a) from the external Mg2+ null-point at which the ionophore A23187 produced no net movement of Mg2+ or H+; (b) by Mg- sensitive electrode measurements in freeze-thawed pellets; and (c) from the 31P nuclear magnetic resonance spectrum of the gamma-phosphate of intracellular ATP. Total cell Mg2+ was approximately 12 mmol per liter cell water. The NMR data indicated [Mg2+]i greater than 0.5 mM. The null-point method gave [Mg2+]i approximately 0.9 nM. The electrode measurements gave 1.35 mM, which was thought to be an overestimate. Exposure to mitogenic doses of Con A for 1 h gave no detectable change in total or free Mg2+.  相似文献   

17.
The subcellular compartmentalization of adenosine 5'-triphosphate (ATP) in isolated perfused rat heart and its relation to energy depletion in ischemia were examined by 31P nuclear magnetic resonance (31P-NMR) spectroscopy and chemical analyses. The signal intensities of the beta-phosphate of ATP and creatine phosphate in the 31P-NMR were standardized by the intracellular volume ratio measured with 23Na-NMR to determine the actual content of each. During aerobic perfusion the ATP content determined by NMR (13.7 +/- 2.2 mumol/g dry weight) was significantly lower than that found by chemical analysis (22.4 +/- 0.7 mumol/g dry weight), while the creatine phosphate contents determined by the two methods were the same. During ischemia at 33 degrees C, the signal of the beta-phosphate of ATP in the 31P-NMR spectrum decreased progressively, disappearing completely after 16 min. But at this time 5.7 +/- 1.7 mumol/g dry weight of myocardial ATP was still detected by chemical analysis. These results indicated that there were two different compartments of intracellular ATP in the heart, only one of which is detectable by 31P-NMR spectroscopy, and that during ischemia the ATP that is detectable, which seems to be the free ATP in the cytosol, decreased more rapidly than the ATP in the other compartment.  相似文献   

18.
Abstract

The uterus of the guinea pig fetus has been shown to respond to estradiol treatment by an increase in uterine wet weight and a stimulation of the progesterone receptor protein. A study of the kinetics of these two parameters of estrogen response in the fetal uterus was undertaken in order to correlate these responses with changes in the estrogen receptor. Administration of estradiol to pregnant guinea pigs (1 mg/kg/body weight) leads to a rapid stimulation of the progesterone receptor by 6h after treatment which reaches maximal values by 15.5h, which are increased 7-fold in estradiol-primed guinea pigs above values in untreated animals. The estradiol receptor undergoes rapid translocation from the cytosol into the nucleus by 1h after hormone treatment and is retained in the nucleus for at least 6h. At the same time, there is a 50% decrease in the total occupied and available estradiol receptor concentration at 6h after treatment. Estradiol treatment also provokes an increase in wet weight of the fetal uterus which is significantly greater after 3 consecutive days of treatment (171% ± 24 (S.D.) above wet weights of untreated uteri which were considered as 100%) than after only 1 day (121% ± 25 (S.D.)). These estrogen responses were found to be of long duration since uterine wet weights and progesterone receptor concentrations remained well above control values even 5 days after a single treatment with estradiol. In conclusion, the fetal uterus responds to estradiol treatment by a slow increase in wet weight and a rapid stimulation of the progesterone receptor protein with a concomitant loss in estradiol receptor concentration.  相似文献   

19.
Resident and thioglycollate-elicited macrophages maintained in culture for 24 h contain approximately 5 x 10(-16) and 12 x 10(-16) mol of ATP per cell, respectively. During particle ingestion, the levels of ATP in these cells did not change. However, the specific activity of ATP extracted from macrophages labeled with [32P]Pi during phagocytosis was 40% lower than ATP extracted from control cells. These results suggested that macrophages contain a high energy phosphate reservoir, in addition to the ATP pool(s). A search for such a reservoir led to the identification of creatine phosphate in both resident and thioglycollate-elicited macrophages at concentrations that are in 3- to 5-fold-molar excess over ATP. Creatine phosphate levels in phagocytosing resident macrophages decreased by 45%, while creatine phosphate levels in phagocytosing thioglycollate-elicited macrophages did not change. Creatine phosphate turnover was measured in macrophages prelabeled with [14C]creatine. Over 90% of the intracellular label was in the form of creatine phosphate. During phagocytosis, there was a 40% decrease in intracellular [14C]creatine phosphate in both resident and thioglycollate-elicited macrophages. These results indicate that creatine phosphate turns over more rapidly during phagocytosis and replenishes the ATP consumed.  相似文献   

20.
Free intracellular Mg2+ concentration ([Mg2+]i) was measured in cold-stored human erythrocytes by the method of null-point titration with ionophore A23187. [Mg2+]i was 311 +/- 41 microM (mean +/- S.D.) for cells stored 0-10 days, increasing to 458 +/- 64 microM for cells stored 22-48 days. The values for stored cells were higher than those previously determined by a 31P-NMR method (Bock et al. (1985) Blood 65, 1526-1530); however, the null-point method requires extensive washing of the cells, which we have found to increase NMR-measured [Mg2+]i. The null-point values still represent a small fraction of total cell Mg2+, and confirm that binding of Mg2+ to ligands other than ATP and 2,3-bisphosphoglycerate must increase during storage. As an initial test of whether this may imply suboptimal availability of Mg2+ for cell preservation, we used A23187 to prepare erythrocytes with altered Mg2+ content, then removed ionophore and stored the cells in plasma-free medium for up to 2 weeks. Higher Mg2+ content had a very significant positive correlation (P less than 0.0001) with higher cell ATP concentrations. Storage did not significantly affect basal or Na+-stimulated efflux of Mg2+ from Mg2+-loaded red cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号