首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Guanylyl imidodiphosphate (GMP-PNP) hydrolyzing enzyme activity as a means of detecting plasma membrane guanylate cyclase was demonstrated in osteoblasts of chicken tibial metaphysis using a lead citrate histochemical method at the electron microscopic level. Activity was not discerned in osteoclasts or osteocytes. The reaction product development was completely abolished when the sections were incubated with substrate-free or MnCl2-free medium. Guanylate-(beta, gamma-methylene) diphosphate (GMP-PCP) was a less effective substrate than GMP-PNP, and Mn++ was a stronger stimulator than Mg++. No reaction product was observed on the plasma membrane of osteoblasts when beta-glycerophosphate or p-nitrophenylphosphate was used as substrate instead of GMP-PNP. The results implicate guanylate cyclase as a significant effector of osteoblast regulation at the site of the plasma membrane.  相似文献   

2.
Adenylate cyclase activity was demonstrated cytochemically in rat liver for the first time under the light microscope using cryostat sections mounted on glass cover slips and fixed with 1% glutaraldehyde for 1 min. Adenylate-(beta, gamma-methylene)diphosphate (AMP-P(CH2)P) was introduced as a new substrate for adenylate cyclase. It was found that adenylate cyclase was distributed heterogenously within the liver lobule. The enzyme activity was stronger in the area surrounding the central vein. A more specific localization at the plasma membrane and less unspecific background was obtained with AMP-P(CH2)P as compared to adenylylimidodiphosphate (AMP-P(NH)P). The specificity of the enzyme reaction using AMP-P(CH2)P was proved by increased formation of reaction product in the presence of 0.05 mg/ml glucagon and 0.125 mg/ml cholera toxin, as well as by inhibition of the reaction with 0.05 mg/ml alloxan. These effects were also observed at the electron microscopic level. On the other hand, no increase in reaction was observed in the presence of glucagon with AMP-P(NH)P as a substrate for adenylate cyclase, and only a weak activation was observed after adding cholera toxin; alloxan-inhibition was not complete. These effects may be due to the presence of enzymes which hydrolyze AMP-P(NH)P nonspecifically, superimposing on the product of adenylate cyclase activity. We therefore suggest the use of AMP-P(CH2)P as substrate for histochemical adenylate cyclase demonstration in the liver.  相似文献   

3.
Liver plasma membranes of hypophysectomized rats were purified, treated with 0.1 m Lubrol-PX and centrifuged at 165,000g for 1 h. The detergent solubilized 50% of the membrane protein; adenylate cyclase activity was present in the supernatant fraction. Optimal substrate concentration of the soluble enzyme was 0.32 mm ATP. Basal activity of 25 preparations of the solubilized enzyme ranged from 124 to 39 pmol cyclic AMP/mg protein/10 min. The solubilized enzyme retained the same sensitivity to activation by guanyl nucleotides as was present in the membrane preparation from which it was derived. Relative sensitivity of the solubilized enzyme with 0.1 mm nucleotides or -side was GDP > GTP > GMP > guanosine; GMP-PNP = GMP-PCP > ITP > GTP. GTP, GMP-PCP, GMP-PNP and other nucleotides were hydrolyzed by phosphohydrolases present in liver membranes that were solubilized with Lubrol-PX along with adenylate cyclase. The presence of the ATP regenerating system in the adenylate cyclase assay also aided in maintaining guanyl nucleotide concentrations. The degree of adenylate cyclase activation by guanyl nucleotides was not related to the sparing effects of nucleotides on substrate ATP hydrolysis. These findings demonstrate that activation of adenylate cyclase by nucleotides is a consequence of a nucleotide-enzyme interaction that is independent of membrane integrity.  相似文献   

4.
Liver plasma membranes isolated from hypophysectomized rats were treated with 0.1 M Lubrol-PX, a nonionic detergent, and centrifuged at 165,000 × g for 1 hour. Adenylate cyclase activity remaining in the supernate had a specific activity that was at least equal to that of the particulate enzyme. The activity of the solubilized, non-sedimentable adenylate cyclase, as well as the membrane bound enzyme, was increased by GTP, ITP, and GMP-PCP at 10?4 M. The activity of the solubilized, non-sedimentable enzyme increased linearly with GTP from 10?6 to 10?4 M but there was no further increase in the activity of the solubilized enzyme with 10?3 M GTP. In contrast, the particulate liver membrane enzyme activity increased exponentially with GTP from 10?6 to 10?4 M and was further increased by 10?3 M GTP. These data indicate that GTP, ITP or GMP-PCP have direct effects on solubilized adenylate cyclase. This effect is in addition to a role of nucleotides in modifying membrane structure (16).  相似文献   

5.
6.
Bone resorption by osteoclasts is modified by agents that affect cyclic guanosine monophosphate (cGMP), but their relative physiological roles, and what components of the process are present in osteoclasts or require accessory cells such as osteoblasts, are unclear. We studied cGMP regulation in avian osteoclasts, and in particular the roles of nitric oxide and natriuretic peptides, to clarify the mechanisms involved. C-type natriuretic peptide drives a membrane guanylate cyclase, and increased cGMP production in mixed bone cells. However, C-type natriuretic peptide did not increase cGMP in purified osteoclasts. By contrast, osteoclasts did produce cGMP in response to nitric oxide (NO) generators, sodium nitroprusside or 1-hydroxy-2-oxo-3,3-bis(3-aminoethyl)-1-triazene. These findings indicate that C-type natriuretic peptide and NO modulate cGMP in different types of bone cells. The activity of the osteoclast centers on HCI secretion that dissolves bone mineral, and both NO generators and hydrolysis-resistant cGMP analogues reduced bone degradation, while cGMP antagonists increased activity. NO synthase agonists did not affect activity, arguing against autocrine NO production. Osteoclasts express NO-activated guanylate cyclase and cGMP-dependent protein kinase (G-kinase). G-kinase reduced membrane HCI transport activity in a concentration-dependent manner, and phosphorylated a 60-kD osteoclast membrane protein, which immunoprecipitation showed is not an H+-ATPase subunit. We conclude that cGMP is a negative regulator of osteoclast activity. cGMP is produced in response to NO made by other cells, but not in response to C-type natriuretic peptide. G-kinase modulates osteoclast membrane HCI transport via intermediate protein(s) and may mediate cGMP effects in osteoclasts.  相似文献   

7.
Adenylate cyclase activity in platelet membrane preparations was measured in the presence of prostaglandin E1 (PGE1), GTP and a non-hydrolysable analogue of GDP, guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). A dose-dependent inhibition of adenylate cyclase by GDP[beta S] was observed that could be reversed either by adding increased amounts of GTP or of PGE1.  相似文献   

8.
Adenylate cyclase activity was detected and characterized in cell-free preparations of different strains ofEscherichia coli; it was localized not only in the membrane fraction but also in the cytoplasm, the localization differing from strain to strain. The adenylate cyclase activity is highly dependent on the method used for disintegration of cells. The best results were obtained when using vortexing of the cell suspension with ballotini beads. The pH optimum of adenylate cyclase in cell-free preparations was found to be 9.0 –9.5. The enzyme has an absolute requirement for Mg2+ and is inhibited by sodium fluoride and inorganic diphosphate. Release of adenylate cyclase from the membrane leads to an immediate loss of the activity; it was found that adenylate cyclase is quite labile and hence it could not yet been purified. The method used to determine adenylate cyclase activity and cyclic AMP is described.  相似文献   

9.
Osteoclasts, isolated from the endosteum of 2.5- to 3-week-old chickens, were treated with acridine orange, a hydrogen ion concentration-sensitive fluorescent dye, in order to monitor changes in acid production. The adenylate cyclase inhibitor, alloxan, blocked parathyroid hormone (PTH)-stimulated acid production. Dibutyryl cyclic adenosine monophosphate, a membrane-permeant form of cyclic adenosine monophosphate, mimicked the PTH effect. Bisindolylmaleimide, a specific inhibitor of protein kinase C (PKC), blocked the initial stimulation (15, 30, and 60 min) of acid production by PTH but had no effect on long-term stimulation (120 min). Confocal microscopy of osteoclasts stained with fluorescein-conjugated bisindolylmaleimide revealed a shift in location of PKC from the cytoplasm to the plasma membrane region after treatment with parathyroid hormone. The results of these studies support the hypothesis that PTH regulation of acid production in osteoclasts involves both adenylate cyclase and PKC as effectors. J. Cell. Biochem. 65:565–573. © 1997 Wiley-Liss Inc.  相似文献   

10.
This study was aimed to elucidate whether GDP can mediate hormonal signal to adenylate cyclase in hepatic glucagon sensitive adenylate cyclase with ATP as substrate. Conversion of added GDP to GTP catalyzed by nucleoside diphosphate kinase was suppressed to less than 0.3% of added GDP by including UDP. Inhibition of this enzyme activity by UDP was accompanied by a preferential loss of the stimulatory effect of glucagon plus GDP on cyclase activity without changes in effects of glucagon plus GTP, glucagon plus guanosine 5'-(beta, gamma-imino)triphosphate, and NaF. Under this condition, i.e. in the presence of UDP, GDP competitively inhibited the actions of GTP (Ki for GDP, 1 microM) and guanosine 5'-(beta, gamma-imino)triphosphate in the presence of glucagon, the inhibition being complete at high GDP concentrations. GDP also inhibited cyclase activity stimulated by NaF with UDP but did only slightly without UDP. It was demonstrated that nucleoside diphosphate kinase is located in membranes in addition to cytosol fraction. However, the activity of membrane-associated enzyme was not affected by the addition of glucagon. Based on these observations, it is concluded that GDP is unable to mediate hormonal signal to adenylate cyclase and that it acts as an inhibitor of cyclase activity stimulated by GTP or its analog along with hormone. The results suggest a possible role of membrane-associated nucleoside diphosphate kinase in determining GTP and GDP levels at or near their binding site so as to replenish GTP and, thereby, decrease the inhibitory action of GDP when hormone is present.  相似文献   

11.
Prostaglandin E1 stimulation of human platelet adenylate cyclase, in purified plasma membranes, occurs without the addition of exogenous GTP. Possible contamination of the adenylate cyclase assay mixture by GTP either from nonspecifically bound nucleotide in the plasma membrane or from the substrate ATP was ruled out as follows: (a) variation of the membrane concentration, repeated washing, inclusion of EDTA, GDP beta S, or GMP in the wash step, or UDP in the assay, are all without effect, and (b) analysis of the substrate by high-performance liquid chromatography revealed no contaminating GTP. Other prostaglandins (I2, E2, D2) also activate cyclase without the addition of GTP. In sharp contrast, stimulation of adenylate cyclase in the human neutrophil plasma membrane by prostaglandin E1 shows an obligatory requirement for GTP, under identical assay conditions. GDP beta S pretreatment amplifies the fold cyclase stimulation by GTP in the presence and absence of prostaglandin E1, by lowering the basal activity. This alteration occurs without lowering the GTP-independent prostaglandin E1 activation, and is specific for inhibitory guanine nucleotides (GDP beta S, GMP, GDP) in the pretreatment. Extensive washing with buffer or incubation with other nucleotides, epinephrine, or prostaglandin E1 prior to the assay, is without effect. GTP gamma S treatment of the membrane induces a high-activity state and abolishes the GDP beta S effect on basal activity as well as prostaglandin E1 activation of cyclase. The results suggest distinct patterns of prostaglandin stimulation in platelet and neutrophil cyclase systems, and further imply that guanine nucleotide, prebound to specific sites within the GTP-regulatory proteins, may modify the kinetic characteristics of platelet adenylate cyclase.  相似文献   

12.
The present studies have established that there is an impaired response to epinephrine of the adenylate system in adipocyte preparations from obese hyperglycemic mice as compared to their thin littermates. In contrast, membrane preparations from both groups of animals were found to exhibit a similar response to fluoride ion. The response of adenylate cyclase to epinephrine was enhanced to a similar extent by increasing the ATP concentration in adipocyte plasma membranes from the two groups of animals. While GTP (0.1 muM) elicited an ATP-like response of similar magnitude in adenylate cyclase activity in both membrane preparations, it did not therefore abolish the impaired response to epinephrine of adenylate cyclase activity in membranes of obese mice. The response of adenylate cyclase activity to (--)-epinephrine in membrane preparations from obese mice progressively diminished with the age of these animals. In contrast, the concentration of (--)-epinephrine required for half-maximal stimulation of adenylate cyclase was similar and remained unchanged with the age for both membrane preparations. These data suggest that a perturbation may occur in the coupling step between the hormone receptor and the catalytic site of the adenylate cyclase system in obese mice. While a 15-day restrictive diet or a 72-h period of fasting was found to normalize the hyperinsulinemia of obese animals, neither affected the response of adenylate cyclase to epinephrine in preparations of adipocyte membranes from these mice. These results suggest that the observed defect in the response of plasma membrane adenylate cyclase activity to epinephrine in obese mice does not result from their hyperinsulinism.  相似文献   

13.
The effects of the mixed agonist epinephrine and the beta agonist isoproterenol, each alone and in combination with the alpha adrenergic blocker phentolamine and the beta blocker propranolol on the adenylate cyclase activity of human adipocyte membrane fragments were determined in a calcium free buffer. Neither phentolamine (10 muM) nor propranolol (32 muM) affected basal adenylate cyclase activity. Epinephrine (10 muM) stimulated adenylate cyclase activity and this effect was slightly enhanced by phentolamine. The combination of epinephrine plus propranolol depressed adenylate cyclase below the basal level. Isoproterenol (10 muM) markedly stimulated adenylate cyclase; the addition of phentolamine caused an equivocal further increase while the addition of propranolol depressed adenylate cyclase activity to, but not below, the basal level. These findings are consistent with the hypothesis that human adipocytes have both alpha and beta adrenergic receptors and that these receptors are associated with the cell membrane adenylate cyclase system.  相似文献   

14.
Dietary lipid supplements high in either saturated fat derived from sheep kidney fat or unsaturated fat derived from sunflower seed oil, and a low mixed fat reference diet were fed to marmoset monkeys for 20 months and the effects on cardiac membrane lipid composition, and myocardial catecholamine-stimulated adenylate cyclase and beta-adrenergic receptor binding activity were investigated. For cardiac membranes enriched for beta-adrenergic binding activity, the dietary lipid treatment resulted in small changes in the proportion of saturated to unsaturated fatty acids and substantial changes in the (n - 6) to (n - 3) series of unsaturated fatty acids in the membrane phospholipids. The sheep kidney fat diet increased the cholesterol-to-phospholipid ratio in cardiac membranes in comparison to the other diets. This diet also significantly elevated basal and isoproterenol-, epinephrine- and norepinephrine-stimulated adenylate cyclase activity. The value of the dissociation constant (Kd) and the receptor number (Bmax) for the binding of [125I]ICYP to the beta-adrenergic receptor was significantly reduced in marmosets fed the sheep kidney fat diet. These results suggest that dietary lipids can influence the activity of the beta-adrenergic/adenylate cyclase system of the heart. Modulation of this transmembrane signalling system may be induced by changes in the properties of the associated membrane lipids, particularly by alteration in the membrane cholesterol-to-phospholipid ratio. This effect may be limited to those animal species in which the nature of the dietary fatty acid intake may be influencing cardiac membrane cholesterol homeostasis, which is in agreement with previous results in rats following dietary cholesterol supplementation (McMurchie et al. (1987) Biochim. Biophys. Acta 898, 137-153). ICYP, (-)-iodocyanopindolol.  相似文献   

15.
Phosphate deprivation causes a resistance to the phosphaturic effect of parathyroid hormone (PTH). The present study determined whether acute phosphate deprivation alters basal or stimulated activities of key enzymes of the cyclic adenosine monophosphate (cAMP) metabolism in microdissected proximal convoluted and proximal straight tubules, since blunted cAMP levels in these proximal subsegments might account for refractoriness to the effect of PTH on phosphate reabsorption in the proximal convoluted and proximal straight tubule segments. In the proximal convoluted tubules of rats fed a normal-phosphate diet (NPD), PTH increased the adenylate cyclase activity by tenfold. In the proximal convoluted tubule of rats fed a low-phosphate diet (LPD), PTH also increased the adenylate cyclase activity by tenfold. In addition, forskolin increased the adenylate cyclase activity to levels similar to PTH in the proximal convoluted tubule of rats fed NPD or LPD. In the proximal straight tubule of rats fed NPD, PTH resulted in an approximately fivefold increase in adenylate cyclase activity. In the proximal straight tubule of rats fed LPD, PTH resulted in a fourfold increase in adenylate cyclase activity. The forskolin-stimulated adenylate cyclase activity was markedly decreased (46%) in the proximal straight tubule of phosphate-deprived rats. The cAMP-phosphodiesterase activity in the proximal convoluted tubule was significantly increased by 26% in phosphate-deprived rats. The cAMP-phosphodiesterase activities in the proximal straight tubules from rats fed NPD or LPD were similar. We conclude that distinct differences in key enzymes of cAMP metabolism exist in the proximal convoluted and proximal straight tubule subsegments. Further, phosphate deprivation affects the cAMP-phosphodiesterase and adenylate cyclase activities differently in these nephron subsegments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Rats fed a diet deficient in both vitamin D and Ca2+ exhibited a greater depression of the renal parathyroid hormone (PTH)-dependent adenylate cyclase than was observed in rats fed diets deficient in either vitamin D or calcium. Total serum Ca2+ was decreased from a control level of 11.2 mg/dl to 8.5 mg/dl in rats fed the diet deficient in calcium alone, and to 5.4 mg/dl in rats fed the diet deficient in vitamin D. Serum calcium was decreased further to 4.3 mg/dl in rats fed the diet deficient in both vitamin D and Ca2+. Serum immunoreactive PTH was significantly elevated over control levels when rats were fed the test diets; however, there were no significant differences between the elevated levels in the three experimental groups. Repletion of rats deficient in vitamin D only with a single oral dose of 3200 I.U. vitamin D-2 resulted in restoration of serum calcium to normal levels, a return of serum PTH to the control state, and an associated increase in PTH-dependent adenylate cyclase activity to the control level by 72 h. Repletion of rats deficient in both vitamin D and Ca2+ with the same dose of vitamin D-2 raised serum Ca2+ to 7.2 mg/dl by 72 h, but did not cause a reduction in circulating PTH, nor did it result in any significant improvement in the responsiveness of the membrane adenylate cyclase to PTH. These results suggest that elevated PTH is a factor in the down regulation of the PTH-dependent adenylate cyclase, but do not rule out a role for calcium as a regulatory factor.  相似文献   

17.
Regulation of osteoclast activity.   总被引:27,自引:0,他引:27  
E M Greenfield  Y Bi  A Miyauchi 《Life sciences》1999,65(11):1087-1102
Osteoclasts are the primary cell type responsible for bone resorption. This paper reviews many of the known regulators of osteoclast activity, including hormones, cytokines, ions, and arachidonic acid metabolites. Most of the hormones and cytokines that inhibit osteoclast activity act directly on the osteoclasts. In contrast, most of the hormones and cytokines that stimulate osteoclast activity act indirectly through osteoblasts. Particularly interesting in this regard are agents that directly inhibit activity of highly purified osteoclasts yet stimulate activity of osteoclasts that are co-cultured with osteoblasts. Recent studies have demonstrated that the primary mechanism by which bone resorptive agents stimulate osteoclast activity indirectly is likely to be up-regulation of production of osteoclast differentiation factor/osteoprotegerin ligand (ODF/OPGL) by the osteoblasts. In addition to discussing regulators of osteoclast activity per se, this paper also reviews the role of osteoclast apoptosis to limit the extent of bone resorption.  相似文献   

18.
Bone resorption activity by osteoclasts has been evaluated in a co-culture system in which osteoclasts have been plated in the presence of osteoblasts. The system prevents cell-cell contact but permits diffusion of molecules through the pores of a millipore membrane that separates the two compartments in which the two cell types have been plated. Results demonstrated that osteoblasts exert a stimulatory effect over osteoclast bone resorption due to soluble molecules capable of passing through the membrane pores. The effect is specific since periosteal cells, which do not express osteoblastic characteristics, fail to induce changes in the osteoclast activity. PTH does not affect osteoblast-mediated enhancement of bone resorption, indicating that the stimulatory effect that the hormone exert in vivo occurs via a different cellular system.  相似文献   

19.
The effect of the hepatocarcinogen dimethylnitrosamine on rat liver plasma membrane adenylate cyclase activity and lipid fluidity was assessed. Glucagon-stimulated adenylate cyclase activity exhibited a complex response to increasing concentrations of dimethylnitrosamine, whereas fluoride-stimulated adenylate cyclase activity was progressively inhibited. Maximal inhibitory effects were observed at a concentration of 15 mM in both cases. The activity of detergent-solubilized adenylate cyclase was unaffected by dimethylnitrosamine. ESR analysis using a fatty acid spin probe showed that dimethylnitrosamine produced a marked, dose-dependent reduction in the fluidity of the plasma membrane with a maximal effect occurring at 20 mM. Dimethylnitrosamine also elevated the temperature at which the lipid phase separation occurred in rat liver plasma membranes, from 28 degrees C to 31 degrees C. The non-carcinogenic but structurally similar compound, dimethylamine hydrochloride neither inhibited adenylate cyclase nor decreased plasma membrane fluidity. It is suggested that the decrease in membrane fluidity, induced by dimethylnitrosamine, via its effects on membrane fluidity, could influence plasma membrane function and cellular regulation.  相似文献   

20.
Rats fed with a cholesterol supplement to their diet exhibited an increase in their plasma membrane cholesterol phospholipid (C/P)-lipid molar ratio from 0.72 to 0.98, whereas those fed the hypocholesterolaemic drug clofibrate in their diet exhibited a decrease in this ratio to 0.62. The properties of these membranes were analysed with regard to ligand-stimulated adenylate cyclase activity and the mobility of a fatty acid spin probe which allowed lipid phase separations to be identified. Membranes with elevated C/P ratios exhibited two distinct lipid phase separations, one at around 36 degrees C that was attributed to the external half of the bilayer and one at around 22 degrees C which was attributed to the inner half of the bilayer. Membranes with lowered C/P ratios exhibited a single lipid phase separation occurring at around 21 degrees C which was attributed to the lipids of the inner half of the bilayer. These results were compared with those obtained by manipulation of C/P ratios in vitro using liposome-cholesterol exchange techniques. Dietary manipulation of the C/P ratio of plasma membranes in vivo led to alterations in the fold stimulation of adenylate cyclase by various stimulatory ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号