共查询到20条相似文献,搜索用时 0 毫秒
1.
Chromosomes and nucleoli of the axolotl, Ambystoma mexicanum 总被引:4,自引:0,他引:4
H G Callan 《Journal of cell science》1966,1(1):85-108
2.
3.
Surgically constructed symmetrical double-anterior and double-posterior upper forelimbs of the axolotl were amputated immediately after surgery. Double-anterior limbs either failed to regenerate or formed single digits or spikes. Double-posterior limbs formed symmetrical double-posterior regenerates in 60% of the cases, thus extending the previous finding that the amount of distal transformation in surgically constructed double-half limbs is inversely proportional to the time between grafting and amputation (Tank and Holder, 1978). When these symmetrical regenerates were amputated through the forearm region, all but one formed a symmetrical secondary regenerate. The majority of the secondary regenerates had a larger number of digits than did their corresponding primary regenerates. Reamputation of the secondary regenerates resulted in symmetrical tertiary regenerates, and the majority of these also had a larger number of digits than did their corresponding primary regenerates. The results are compared to those of Slack and Savage (1978a, b) on embryonically derived double-posterior limbs and they are discussed in terms of a formal model for distal transformation (Bryant and Baca, 1978). 相似文献
4.
Glycosaminoglycans (GAGs) involved in the formation of the teeth of Ambystoma mexicanum were located and characterized with the cuprolinic blue (CB) staining method and transmission electron microscopy (TEM). Glycosaminoglycan-cuprolinic blue precipitates (GAGCB) were found in different compartments of the mineralizing tissue. Various populations of elongated GAGCB could be discriminated both according to their size and their preferential distribution in the extracellular matrix (ECM). GAGCB populations that differ in their composition could be attributed not only to the compartments of the ECM but also to different zones and to different tooth types (early-larval and transformed). Larger precipitates were only observed within the dentine matrix of the shaft of the early-larval tooth. The composition of the populations differed significantly between the regions of the transformed tooth: pedicel, shaft and dividing zone. In later stages of tooth formation, small-sized GAGCBs were seen as intracellular deposits in the ameloblasts. It is concluded that the composition of GAGCB populations seems to play a role in the mineralization processes during tooth development in A. mexicanum and influence qualitative characteristics of the mineral in different tooth types and zones, and it is suggested that GAGs might be resorbed by the enamel epithelium during the late phase of enamel formation. 相似文献
5.
Gresens J 《Lab animal》2004,33(9):41-47
A number of unusual traits, including a remarkable capacity for wound healing and limb regeneration, make the axolotl an interesting animal model. The author provides an overview of axolotl care and use in biomedical research. 相似文献
6.
David L. Stocum 《Developmental biology》1980,79(2):276-295
Intercalary regeneration of stylopodial and zeugopodial skeletal elements takes place in axolotl limbs composed of normal wrist blastemas autografted or homografted to double half-anterior or half-posterior thighs. Analysis of the morphological pattern of the skeleton and, in homografts, of pigmentation pattern, shows that the intercalated elements are derived from the host double half-thigh. Intercalary regeneration from double half-posterior thighs is expected since they normally can undergo complete proximal-distal regeneration, but is not necessarily expected from double half-anterior thighs, since they normally do not regenerate more distal segments. These results demonstrate that (1) cells of double half-anterior thighs are not inherently incapable of undergoing distal transformation, (2) cells of a distal blastema grafted to a more proximal level do not form patterns proximal to their level of origin, and (3) there is an inhibitory interaction between blastema cells derived from double half-anterior thighs that is expressed after simple amputation, but not when these cells are in contact with a more distal, normal blastema. Using these and other data, a three-dimensional boundary model of limb regeneration is proposed. 相似文献
7.
Class I major histocompatibility complex (Mhc) cDNA clones were isolated from axolotl mRNA by polymerase chain reaction (PCR) and by screening a cDNA phage library. The
nucleotide and predicted amino acid sequences show definite similarities to the Mhc class Iα molecules of higher vertebrates.
Most of the amino acids in the peptide binding region that dock peptides at their N and C termini in mammals are conserved.
Several amino acids considered to be important for the interaction of β2-microglobulin with the Mhc α chain are also conserved in the axolotl sequence. The fact that axolotl class I A cDNAs are
ubiquitously expressed and highly polymorphic in the α1 and α2 domains suggests the classical nature of axolotl class I A
genes.
Received: 3 June 1996 / Revised: 14 October 1996 相似文献
8.
H J Allen H Ahmed A Sharma 《Comparative biochemistry and physiology. B, Comparative biochemistry》1992,103(2):313-315
1. Lactose-inhibitable hemagglutination activity was identified in extracts of axolotl (Ambystoma mexicanum) larvae. 2. Two types of lectin were isolated from extracts by affinity chromatography on lactose-Sepharose. 3. A thiol-independent lectin of subunit mol. wt 15 kDa and a thiol-dependent lectin of subunit mol. wt 18 kDa were identified. 4. The 15 kDa and a 18 kDa polypeptides were weakly reactive with polyclonal anti-human galaptin serum. 相似文献
9.
Migration of trunk neural crest cells in axolotl embryos has been followed by autoradiography using grafts of [3H]thymidine-labeled neural folds. Crest cells form melanocytes, dorsal fin mesenchymal cells, spinal ganglion cells, and reach the sympathetic region. Sympathetic neurons, however, are not identifiable morphologically until about 6 weeks posthatching, in 24-mm larvae. At this stage, neurons, although few, have characteristic ultrastructure and receive synapses. The diffuse ganglia also contain innervated chromaffin cells; these differentiate earlier, a few days posthatching, in 14-mm larvae. A third type of cell is of morphologically indifferent appearance. Catecholamine-specific formaldehyde-induced fluorescence first appears clearly at 14 mm; with growth, the number of fluorescent cells increases. Series of larvae were injected intraperitoneally with nerve growth factor (NGF), six 30-unit injections over 2 weeks. NGF treatment increases the number of neurons apparent in 24-mm larvae. Furthermore, differentiated neurons occur in NGF-treated 20-mm larvae (about 4 weeks posthatching), when there are none in controls. The early appearance of differentiated chromaffin cells and the relatively late appearance of differentiated sympathetic neurons suggest that adrenergic functions during the first few weeks of larval life are controlled humorally by the chromaffin cells, and that at 24 mm, neurons begin to provide faster, finer control. 相似文献
10.
Summary Lungs of neotenic larvae of Ambystoma mexicanum were prepared for maintaining the air-tissue boundary during aldehyde fixation. Four methods of postfixation were applied: 1) osmium tetroxide followed by en-bloc staining with uranyl acetate and phosphotungstic acid, 2) ruthenium redosmium tetroxide, 3) osmium tetroxide-ferrocyanide, and 4) tannic acidosmium tetroxide.Three types of cells line the inner surface of the axolotl lung: 1) pneumocytes, covering the capillaries with flat cellular extensions and containing two types of granules: the osmiophilic lamellar bodies, precursors of extracellular membranous material, and apical granules of unknown significance; 2) ciliated cells, also containing osmiophilic lamellar bodies; and 3) goblet cells filled with secretory granules as well as osmiophilic bodies.The extracellular material forms membranous whorls as well as tubular myelin figures, consisting of membranous backbones combined with an intensely stained substance. This material strikingly resembles the surfactant of amphibian lungs. 相似文献
11.
Heinrich Münz Barbara Claas 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1991,169(4):461-469
Summary Activity of efferent fibers was recorded from the ramus ophthalmicus superficialis of the head lateral line nerve and the ramus medialis of the trunk lateral line nerve of the axolotl Ambystoma mexicanum. Baseline activity and activity evoked by sensory stimuli were examined. Electrical stimulation of selected branches was used to determine the conduction velocity and the branching pattern of efferent fibers. The influence of lesions at different levels in the CNS on efferent activity was studied.Up to 5 units with baseline activity were found in a single ramus of the lateral line nerve. Discharge rates were variable and highly irregular; they differed between units of the same branch. Bursting activity occurred in 62% of the units. Movements of the animal were accompanied by activity in up to 8 efferent units in a single nerve.Efferent activity could be elicited or modified by stimulation of visual, labyrinthine, somatosensory, and lateral line systems. Stimulation of the electrosensory system had no effect. Individual efferent neurons innervated different fields in the lateral line periphery. Conduction velocities of efferent fibers ranged from 5 to 12 m/s.Efferent units received input from various sources at different brain levels up to the diencephalon. These in puts determined the baseline activity. The mechanosensory input was mediated at the medullary level.Abbreviations
r.m.
ramus medialis
-
r.o.s.
ramus ophthalmicus superficialis
-
r.s.
ramus superior 相似文献
12.
13.
A staging system has been devised for normal regeneration from the upper arm in the mature axolotl. It consists of seven externally definable stages: (1) Wound healing (WH); (2) Dedifferentiation (DD); (3) Early bud (EB); (4) Medium bud (MB); (5) Late bud (LB); (6) Palette (Pal), and (7) Digital outgrowth (DO). Serial histological sections of 38 regenerating limbs were used to correlate gross stages with microscopic events in the regenerative process. 相似文献
14.
15.
Embryos of the axolotl affected with the cardiac-lethal mutation form hearts that never begin to beat. A number of other traits characteristic of the mutant phenotype, including edema, underdeveloped gills, shorter stature, and aphagia (the inability to feed), were believed to be secondary effects of the absence of circulation. We have recently demonstrated that the pre-cardiac mesoderm is directly affected by the c gene, making it unresponsive to normal inductive signals. In this study, we replaced part or all of the mutant pre-cardiac mesoderm with wild-type tissue, to produce embryos with normally beating hearts and circulation. As expected, most of the other mutant characteristics were also corrected. However, otherwise normal individuals remained aphagic. All embryos with beating hearts containing mutant tissue also suffered from an unexpected circulatory arrest some time after the onset of circulation. This apparently indicates that there are at least two tissues other than the myocardium which appear to be directly affected by the c gene. These previously unsuspected pleiotropic effects of the mutation may involve poorly-characterized mesodermal-neural crest inductive interactions and may also lead to a greater understanding of the link between congenital heart defects and feeding difficulties in humans. © 1993Wiley-Liss, Inc. 相似文献
16.
Vertebrate head development is a classical topic that has received renewed attention during the last decade. Most reports use one of a few model organisms (chicken, mouse, zebrafish) and have focused on molecular mechanisms and the role of the neural crest, while cranial muscle development has received less attention. Here we describe cranial muscle differentiation and morphogenesis in the Mexican axolotl, Ambystoma mexicanum. To determine the onset of differentiation we use antibodies against desmin and optical sectioning using confocal laser scanning microscopy on whole-mount immunostained embryos. This technique makes it possible to document the cranial muscle in three dimensions while keeping the specimens intact. Desmin expression starts almost simultaneously in the first, second, and third visceral arch muscles (as in other amphibians studied). Muscle anlagen divide up early into the different elements which constitute the larval cranial musculature. We extend and refine earlier findings, e.g., by documenting a clear division between interhyoideus and interhyoideus posterior. The timing of cranial muscle differentiation differs among vertebrate groups, but seems to be constant within each group. This study provides a morphological foundation for further studies of muscle cell fate and early differentiation. 相似文献
17.
Transplantation immunity in the axolotl (Ambystoma mexicanum) studied by blastemal grafts 总被引:1,自引:0,他引:1
N J de Both 《The Journal of experimental zoology》1970,173(2):147-158
18.
Beginning at mid-neurulation, a wave of somite segmentation passes down the axolotl body axis in a cephalocaudal direction. At 20 degrees C a somite forms every 2.57 hr. Fate-mapping of the presomitic mesoderm indicates that the primordia for the next few somites occupy nearly the same space that they will after segmentation, but that the remaining somites are densely packed in tip of the tail bud. Brief heat shocks at 37 and 38.5 degrees C reveal that within the first of these two zones, there is a graded sensitivity to the shock, with the primordia closest to the last-formed somite showing the greatest resistance. However, primordia within the densely packed tip (the packing zone) also appear resistant, or have sufficient time to repair the damage. We propose that once cells have left the packing zone, they undergo progressive patterning which renders them increasingly insensitive to the disruptive effects of heat shock, and culminates in rosette formation. 相似文献
19.
Recessive mutant gene c in axolotls results in a failure of the heart to function because of abnormal embryonic induction processes. The myocardium in this mutant lacks organized sarcomeric myofibrils. The present study was undertaken to determine if developmental abnormalities were evident in other areas of the heart besides the myocardium. A detailed comparative survey of the structure of developing normal and mutant hearts, including the endocardium, its cellular derivatives, and the extracellular matrix, known as cardiac jelly, showed that in the mutant there are fewer than the normal number of endocardial cells lining the heart lumen, the number of mesenchyme cells is reduced, and the cardiac jelly area is greatly enlarged in the posterior part of the truncus adjacent to the ventricle. 相似文献
20.
S C Smith N S Bashir J B Armstrong 《The International journal of developmental biology》2001,45(4):685-688
A novel developmental mutant in the Mexican axolotl is described. Designated redneck (rn), the mutant gene is inherited as a simple Mendelian recessive. In homozygotes, rn causes massive haemorrhage in the posterior head, rostrocaudal compression of the craniovisceral skeleton, abnormal differentiation of vertebral cartilage, micrognathia, aglossia, microphthalmia and abnormal hepatic development. Affected larvae become evident at the onset of feeding, and eventually die of starvation. Based on the tissues affected, we propose that rn affects later developmental events in the differentiation and morphogenesis of a subset of cranial neural crest cells. Thus, rn may prove a valuable model system for examining the role of neural crest cells in the development of cranial and endodermal derivatives. 相似文献