首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Plasmodium falciparum resistance to the former first-line antimalarials chloroquine and sulfadoxine/pyrimethamine has reached critically high levels in many malaria-endemic regions. This has spurred the introduction of several new artemisinin-based combination therapies (ACTs) that display excellent potency in treating drug-resistant malaria. Monitoring for the emergence of drug resistant P. falciparum is important for maximising the clinically effective lifespan of ACTs. Here, we provide a commentary on the article by Kaddouri et al., published in this issue of the International Journal of Parasitology, which documents the levels of susceptibility to ACT drugs and chloroquine in P. falciparum isolates from Mali. These authors report that some isolates approached a proposed in vitro threshold of resistance to monodesethyl-amodiaquine (the principal effective metabolite of amodiaquine, an important ACT partner drug), and establish baseline levels of susceptibility to the ACT drugs dihydroartemisinin and lumefantrine. The majority of clinical isolates manifested in vitro resistance to chloroquine. The authors also show good concordance between field-based assays employing a non-radioactive lactate dehydrogenase-based method of determining in vitro drug IC50 values and the well-established [3H]hypoxanthine-based radioactive method. This work illustrates a good example of drug resistance surveillance, whose global coordination is being championed by the World Antimalarial Resistance Network. Our current opinion also more generally discusses the complexities inherent to conducting in vitro investigations with P. falciparum patient isolates and correlating these findings with treatment outcome data.  相似文献   

2.
3.
Gametocytocidal activities of pyronaridine and DNA topoisomerase II inhibitors against two isolates of multidrug-resistant Plasmodium falciparum, KT1 and KT3 were determined. After sorbitol treatment, pure gametocyte cultures of Plasmodium falciparum containing mostly young gametocytes (stage II and III) obtained on day 11 were exposed to the drugs for 48 h. The effect of the drugs on gametocyte development was assessed by counting gametocytes on day 15 of culture. Pyronaridine was the most effective gametocytocidal drug against P. falciparum isolates KT1 and KT3 with 50% inhibitory concentration of 6 and 20 nM, respectively. Moreover, the 50% inhibitory concentration of pyronaridine was lower than that of primaquine which is the only drug used to treat malaria patients harboring gametocytes. Prokaryotic (norfloxacin) and eukaryotic (amsacrine and etoposide) DNA topoisomerase II inhibitors were only effective against asexual but not sexual stages of the malaria parasites. Pyronaridine has both schizontocidal and gametocytocidal activities against the human malaria parasite, P. falciparum.  相似文献   

4.
Naphtho[2,3-b]thiophen-4,9-quinone and five derivatives were prepared using the Friedel-Crafts reaction and tandem-lithiation of aromatic diethylamides. These quinones were evaluated for their trypanocidal and anti-plasmodial activities by their effects on: (1) growth of epimastigote forms of Trypanosoma cruzi in vitro, (2) lysis of trypomastigote forms of T. cruzi in murine blood, (3) growth of Plasmodium falciparum in vitro, and (4) inhibition of the recombinant enzyme trypanothione reductase. The parent compound, naphtho[2,3-b]thiophen-4,9-quinone (3a), was among the most active quinone tested in vitro against P. falciparum at 0.2 μM. However, it was inactive against P. berghei-infected mice treated with 2.3 mmol/kg daily for 5 days. Most of the quinones prepared were active against T. cruzi epimastigotes in culture but exhibited weak activity at 4 °C against trypomastigotes in murine blood as well against the enzyme trypanothione reductase. Further structural modifications will be necessary to improve the in vivo activity of the naphthothiophenquinones.  相似文献   

5.
Using N2 cavitation, we established a protocol to prepare the active mitochondria from Plasmodium falciparum showing a higher succinate dehydrogenase activity than previously reported and a dihydroorotate-dependent respiration. The fact that fumarate partially inhibited the dihydroorotate dependent respiration suggests that complex II (succinate–ubiquinone reductase/quinol–fumarate reductase) in the erythrocytic stage cells of P. falciparum functions as a quinol–fumarate reductase.  相似文献   

6.
The anti-malarial agent atovaquone specifically targets the cytochrome bc1 complex and inhibits the parasite respiration. Resistance to this drug, a coenzyme Q analogue, is associated with mutations in the mitochondrial cytochrome b gene. We previously reported atovaquone resistant mutations in Plasmodium berghei, in the first quinone binding domain (Qo1) of the cytochrome b gene (M133I and L144S) with V284F in the sixth transmembrane domain. However, in P. falciparum the most common mutations are found in the Qo2 region. To obtain a better model for biochemical and genetic studies, we have now extended our study to isolate a wider range of P. berghei resistant strains, in particular those in the Qo2. Here we report four new mutations (Y268N, Y268C, L271V and K272R), all in the Qo2 domain. Two of these mutations are convergent to codon 268 (nt802–804) drug-induced mutation in P. falciparum.  相似文献   

7.
8.
I. Orhan  M. Aslan  B. Sener  M. Kaiser  D. Tasdemir   《Phytomedicine》2006,13(9-10):735-739
Thirteen lipophilic extracts prepared with n-hexane from various parts of Pistacia vera L. tree (Anacardiaceae) growing in Turkey were screened for their in vitro activity against four parasitic protozoa, Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum. Melarsoprol, benznidazole, miltefosine, artemisinin and chloroquine were used as reference drugs. The cytotoxic potentials of the extracts on rat skeletal myoblast (L6) cells were also assessed and compared to that of podophyllotoxin. The screening method employed was medium-throughput, where the extracts were tested at two concentrations, at 0.8 and 4.8 μg/ml (T. brucei rhodesiense, L. donovani and Plasmodium falciparum), or at 1.6 and 9.7 μg/ml (T. cruzi and L6 cells). At 4.8 μg/ml concentration, the branch extract of Pistacia vera (PV-BR) significantly inhibited (77.3%) the growth of L. donovani, whereas the dry leaf extract (PV-DL) was active against Plasmodium falciparum (60.6% inhibition). The IC50 values of these extracts were determined as 2.3 μg/ml (PV-BR, L. donovani) and 3.65 μg/ml (PV-DL, Plasmodium falciparum). None of the extracts possessed cytotoxicity on mammalian cells.  相似文献   

9.
The malaria causing protozoan Plasmodium falciparum contains a vestigal, non-photosynthetic plastid, the apicoplast. Numerous proteins encoded by nuclear genes are targeted to the apicoplast courtesy of N-terminal extensions. With the impending sequence completion of an entire genome of the malaria parasite, it is important to have software tools in place for prediction of subcellular locations for all proteins. Apicoplast targeting signals are bipartite; containing a signal peptide and a transit peptide. Nuclear-encoded apicoplast protein precursors were analyzed for characteristic features by statistical methods, principal component analysis, self-organizing maps, and supervised neural networks. The transit peptide contains a net positive charge and is rich in asparagine, lysine, and isoleucine residues. A novel prediction system (PATS, predict apicoplast-targeted sequences) was developed based on various sequence features, yielding a Matthews correlation coefficient of 0.91 (97% correct predictions) in a 40-fold cross-validation study. This system predicted 22% apicoplast proteins of the 205 potential proteins on P. falciparum chromosome 2, and 21% of 243 chromosome 3 proteins. A combination of the PATS results with a signal peptide prediction yields 15% potentially nuclear-encoded apicoplast proteins on chromosomes 2 and 3. The prediction tool will advance P. falciparum genome analysis, and it might help to identify apicoplast proteins as drug targets for the development of novel anti-malaria agents.  相似文献   

10.
The phospholipid metabolism of Plasmodium falciparum-infected erythrocytes has been shown to be an effective pharmacological target for novel chemotherapy. Thirty-seven monoquaternary ammonium derivatives analogous to choline were screened for their potential antiprotozoal activity against P. falciparum and Leishmania braziliensis. Twenty-three compounds inhibited chloroquine resistant and sensitive P. falciparum strains with inhibitory concentrations ranging from 0.001 μM to 47 μM. Among the inhibitors were six compounds with nanomolar activity containing at least one ethyl group in the polar head and a hydrophobic alkyl chain with 10 to 14 methylene groups. Four compounds also exhibited in vitro antileishmanial properties in the micromolar range.  相似文献   

11.
Artemisinin, a sesquiterpene lactone containing an endoperoxide bridge, isolated from Artemisia annua L. is effective against both drug resistant and cerebral malaria causing strains of Plasmodium falciparum. The relative low yields of artemisinin in plants are a serious limitation to the commercialization of the drug. An alternative approach by microbial bioconversion of arteannuin B to artemisinin was carried out by Microbacterium trichotecenolyticum isolated from soil. Crude enzyme extract from cell free extracts were capable of microbial bioconversion of arteannuin B, the immediate precursor of artemisinin, to artemisinin. Attempts have been made to partially purify the proteins involved in bioconversion by ion exchange chromatography. Detection of artemisinin was done by thin layer chromatography, and quantified by HPLC.  相似文献   

12.
We have established a rapid, simple and sensitive flow cytometric system for the detection of Plasmodium falciparum that involves lysing erythrocytes and staining parasites at the same time using a newly developed hemolysing and staining solution containing dodecyl methyl ammonium chloride and acridine orange. In this system, freed parasites of P. falciparum could be plotted separately from erythrocyte ghosts, white blood cells and platelets on the two-dimensional scattergram of forward-angle light scatter and green fluorescence by flow cytometry with an argon laser. It took only 2–3 min per sample to obtain the scattergram and analyze the data, including the time of sample preparation for flow cytometric analysis. Sample preparation with this method does not require any difficult handling procedures. The threshold of parasite detection was almost equal to that of microscopic examination for cultured P. falciparum. The results of drug-susceptibility assays using this system were also almost identical to those obtained using microscopic examination. In this system, parasites at different erythrocytic stages could be easily distinguished. This system must prove useful and practical for basic laboratory studies of P. falciparum including those requiring the differential measurement of parasites at specific erythrocytic stages.  相似文献   

13.
The histone deacetylase (HDAC) enzyme from Plasmodium falciparum has been identified as a novel target for the development of antimalarial therapy. A ligand-refined homology model of PfHDAC-1 was generated from the crystal structures of human HDAC8 and HDLP using a restraint guided optimization procedure involving the OPLS/GBSA potential setup. The model was extensively validated using protein structure checking tools. A predictive docking study was carried out using a set of known human HDAC inhibitors, which were shown to have in vitro antimalarial activity against the chloroquine sensitive D6 and resistant W2 strains of P. falciparum. Pose validation and score-based active/inactive separation studies provided independent validation of the geometric accuracy and the predictive ability of the generated model. Comparative analysis was carried out with the human HDACs to identify differences in the binding site topology and interacting residues, which might be utilized to develop selective PfHDAC-1 inhibitors.  相似文献   

14.
Seven alkaloids have been isolated from fresh bulbs of Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae). Nangustine, reported here for the first time, is the first 5,11-methanomorphanthridine alkaloid with a C-3/C-4 substitution. The structure and stereochemistry of this new alkaloid, as well as those previously known, have been determined by physical and spectroscopic methods. Spectroscopic data of pancracine have been completed. The in vitro assay activity against the parasitic protozoa Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and Plasmodium falciparum was carried out with the compounds nangustine and pancracine.  相似文献   

15.
Antimalarial properties of soy-bean fat emulsions   总被引:1,自引:0,他引:1  
Intralipid® and Ivelip® are commercial preparations of soy-bean lipid extracts used for intravenous supplementation of lipids in various clinical conditions. They were found to inhibit the growth of Plasmodium falciparum in culture with an IC50 of 8.07 ± 2.13 and 13.32 ± 2.05 mg.ml−1, respectively. Intralipid® rapidly and efficiently inhibited nucleic acid synthesis in cultured P. falciparum, exhibiting full inhibitory activity in less than 2 h. Ivelip® injected intraperitoneally, was found by the 4-day suppressive test to be active in vivo against P. vinckei petteri within the normal recommended regimen for dietary lipid supply (0.5–4 g.kg−1), but it was impossible to obtain a radical cure even with very high doses (6.4 g.kg−1). Ivelip® was less effective against P. berghei and P. yoelii nigeriensis. As Ivelip® showed no interference with the antimalarial activity of chloroquine, it could be considered for use in the treatment of severe human malaria in association with 4-aminoquinolines to expedite the clearance of parasites.  相似文献   

16.
In vitro susceptibility to antimalarial drugs of Malian Plasmodium falciparum isolates collected between 2004 and 2006 was studied. Susceptibility to chloroquine and to three artemisinin-based combination therapy (ACT) component drugs was assessed as a first, to our knowledge, in vitro susceptibility study in Mali. Overall 96 Malian isolates (51 from around Bamako and 45 collected from French travellers returning from Mali) were cultivated in a CO2 incubator. Fifty percent inhibitory concentrations (IC50s) were measured by either hypoxanthine incorporation or Plasmodium lactate dehydrogenase (pLDH) ELISA. Although the two sets of data were generated with different methods, the global IC50 distributions showed parallel trends. A good concordance of resistance phenotype with pfcrt 76T mutant genotype was found within the sets of clinical isolates tested. We confirm a high prevalence of P. falciparum in vitro resistance to chloroquine in Mali (60–69%). While some isolates showed IC50s close to the cut-off for resistance to monodesethylamodiaquine, no decreased susceptibility to dihydroartemisinin or lumefantrine was detected. This study provides baseline data for P. falciparum in vitro susceptibility to ACT component drugs in Mali.  相似文献   

17.
Three tricyclic guanidine alkaloids, including 1,8a;8b,3a-didehydro-8β-hydroxyptilocaulin (1), 1,8a;8b,3a-didehydro-8-hydroxyptilocaulin (2) and mirabilin B (3), were identified from the marine sponge Monanchora unguifera. 1,8a;8b,3a-Didehydro-8-hydroxyptilocaulin (2) is a new stereoisomer of 1, the structure of which was elucidated by spectroscopic analysis, comparison of its spectral data with those of 1, and confirmed by X-ray analysis. Compounds 1 and 2 co-crystallized in an unusual perfect order and packed around an approximate inversion center. A mixture of 1 and 2 is active against the malaria parasite Plasmodium falciparum with an IC50 value of 3.8 μg/mL while mirabilin B (3) exhibited antifungal activity against Cryptococcus neoformans with an IC50 value of 7.0 μg/mL and antiprotozoal activity against Leishmania donovani with an IC50 value of 17 μg/mL.  相似文献   

18.
New Baylis–Hillman adducts are synthesized based on substituted 2-chloronicotinaldehydes and screened for their in vitro anti-malarial activity against chloroquine sensitive and chloroquine resistant Plasmodium falciparum. Out of the six new compounds synthesized and screened, 2b, 2c and 2d compounds showed substantial anti-malarial activity.  相似文献   

19.
A series of protein farnesyltransferase inhibitor ester prodrugs of FTI-2148 (17) were synthesized in order to evaluate the effects of ester structure modification on antimalarial activity and for further development of a farnesyltransferase inhibitor with in vivo activity. Evaluation against P. falciparum in red blood cells showed that all the investigated esters exhibited significant antimalarial activity, with the benzyl ester 16 showing the best inhibition (ED50 = 150 nM). Additionally, compound 16 displayed in vivo activity and was found to suppress parasitemia by 46.1% at a dose of 50 mg kg−1 day−1 against Plasmodium berghei in mice. The enhanced inhibition potency of the esters is consistent with improved cell membrane permeability compared to that of the free acid. The results of this study suggest that protein farnesyltransferase is a valid antimalarial drug target and that the antimalarial activity of these compounds derives from a balance between the hydrophobic character and the size and conformation of the ester moiety.  相似文献   

20.
Artemisinin is a sesquiterpene lactone containing an endoperoxide bridge. It is a promising new antimalarial and is particularly useful against the drug resistant strains of Plasmodium falciparum. It has unique antimalarial properties since it acts through the generation of free radicals that alkylate parasite proteins. Since the antimalarial action of the drug is antagonised by glutathione and ascorbate and has unusual pharmacokinetic properties in humans, we have investigated if the drug is broken down by a typical reductive reaction in the presence of glutathione transferases. Cytosolic glutathione transferases (GSTs) detoxify electrophilic xenobiotics by catalysing the formation of glutathione (GSH) conjugates and exhibit glutathione peroxidase activity towards hydroperoxides. Artemisinin was incubated with glutathione, NADPH and glutathione reductase and GSTs in a coupled assay system analogous to the standard assay scheme with cumene hydroperoxide as a substrate of GSTs. Artemisinin was shown to stimulate NADPH oxidation in cytosols from rat liver, kidney, intestines and in affinity purified preparations of GSTs from rat liver. Using human recombinant GSTs hetelorogously expressed in Escherichia coli, artemisinin was similarly shown to stimulate NADPH oxidation with the highest activity observed with GST M1-1. Using recombinant GSTs the activity of GSTs with artemisinin was at least two fold higher than the reaction with CDNB. Considering these results, it is possible that GSTs may contribute to the metabolism of artemisinin in the presence of NADPH and GSSG-reductase We propose a model, based on the known reactions of GSTs and sesquiterpenes, in which (1) artemisinin reacts with GSH resulting in oxidised glutathione; (2) the oxidised glutathione is then converted to reduced glutathione via glutathione reductase; and (3) the latter reaction may then result in the depletion of NADPH via GSSG-reductase. The ability of artemisinin to react with GSH in the presence of GST may be responsible for the NADPH utilisation observed in vitro and suggests that cytosolic GSTs are likely to be contributing to metabolism of artemisinin and related drugs in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号