首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of and potential substrates for methane-producing bacteria and sulfate-reducing bacteria were examined in marsh, estuary, and beach intertidal sediments. Slow rates of methane production were detected in all sediments, although rates of sulfate reduction were 100- to 1,000-fold higher. After sulfate was depleted in sediments, the rates of methane production sharply increased. The addition of methylamine stimulated methanogenesis in the presence of sulfate, and [14C]methylamine was rapidly converted to 14CH4 and 14CO2 in freshly collected marsh sediment. Acetate, hydrogen, or methionine additions did not stimulate methanogenesis. [methyl-14C]methionine and [2-14C]acetate were converted to 14CO2 and not to 14CH4 in fresh sediment. No reduction of 14CO2 to 14CH4 occurred in fresh sediment. Molybdate, an inhibitor of sulfate reduction, inhibited [2-14C]acetate metabolism by 98.5%. Fluoracetate, an inhibitor of acetate metabolism, inhibited sulfate reduction by 61%. These results suggest that acetate is a major electron donor for sulfate reduction in marine sediments. In the presence of high concentrations of sulfate, methane may be derived from novel substrates such as methylamine.  相似文献   

2.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

3.
The fates of acetate and carbon dioxide were examined in several experiments designed to indicate their relative contributions to methane production at various temperatures in two low-sulfate, hot-spring algal-bacterial mats. [2-14C]acetate was predominantly incorporated into cell material, although some 14CH4 and 14CO2 was produced. Acetate incorporation was reduced by dark incubation in short-term experiments and severely depressed by a 2-day preincubation in darkness. Autoradiograms showed that acetate was incorporated by long filaments resembling phototrophic microorganisms of the mat communities. [3H]acetate was not converted to C3H4 in samples from Octopus Spring collected at the optimum temperature for methanogenesis. NaH14CO3 was readily converted to 14CH4 at temperatures at which methanogenesis was active in both mats. Comparisons of the specific activities of methane and carbon dioxide suggested that of the methane produced, 80 ± 6% in Octopus Spring and 71 ± 21% in Wiegert Channel were derived from carbon dioxide. Addition of acetate to 1 mM did not reduce the relative importance of carbon dioxide as a methane precursor in samples from Octopus Spring. Experiments with pure cultures of Methanobacterium thermoautotrophicum suggested that the measured ratio of specific activities might underestimate the true contribution of carbon dioxide in methanogenesis.  相似文献   

4.
The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2-14C]acetate to 14CO2 and not to 14CH4, and the lack of rapid reduction of NaH14CO3 to 14CH4. Sulfate reduction was the dominant process at all depth intervals, but a marked decrease of sulfate reduction and sulfate-reducing bacteria was observed with depth. Concurrent methanogenesis was indicated by the presence of viable methanogenic bacteria and very low but detectable rates of methane production. A marked increased in methane production was observed after sulfate depletion despite high concentrations of sulfide (>1.25 mM), indicating that methanogenesis was not inhibited by sulfide in the natural environment. Although a sulfate minimum and sulfide maximum occurred in the region of maximal sulfate reduction, the absence of sulfate depletion in interstitial water suggests that methanogenesis is always severely limited in Bath Lake sediments. Low initial methanogenesis was not due to anaerobic methane oxidation.  相似文献   

5.
Cell suspensions of Methanosarcina barkeri (strain Fusaro) grown on acetate were found to catalyze the formation of methane and CO2 from acetate (30–40 nmol/min·mg protein) and an isotopic exchange between the carboxyl group of acetate and 14CO2 (30–40 nmol/min·mg protein). An isotopic exchange between [14C]-formate and acetate was not observed. Cells grown on methanol mediated neither methane formation from acetate nor the exchange reactions. The data indicate that the isotopic exchange between CO2 and the carboxyl group of acetate is a partial reaction of methanogenesis from acetate. Both reactions were completely inhibited by low concentrations of cyanide (20 M) or of hydrogen (0.5% in the gas phase). Methane formation from acetate was also completely inhibited by low concentrations of carbon monoxide (0.2% in the gas phase) whereas only significantly higher concentrations of CO had an effect on the exchange reaction. In the concentration range tested KCN, H2 and CO had no effect on methane formation from methanol or from H2 and CO2; however, cyanide (20 M) also affected methane formation from CO. The results are discussed with respect to proposed mechanisms of methane and CO2 formation from acetate.  相似文献   

6.
An investigation of carbon and electron flow in mud and sandflat intertidal sediments showed that the terminal electron acceptor was principally sulfate and that the carbon flow was mainly to CO2. Studies with thin layers of sediment exposed to H2 showed that methane production accounted for virtually none of the H2 utilized, whereas sulfate reduction accounted for a major proportion of the gas uptake. At all sampling sites except one (site B7), rates of methanogenesis were low but sulfate concentrations in the interstitial water were high (>18 mM). At site B7, the sulfate concentrations declined with depth from 32 mM at 2 cm to <1 mM at 10 cm or below, and active methanogenesis occurred in the low-sulfate zone. Sulfate-reducing activity at this site initially decreased and then increased with depth so that elevated rates occurred in both the active and nonactive methanogenic zones. The respiratory index (RI) [RI = 14CO2/(14CO2 + 14CH4)] for [2-14C]acetate catabolism at site B7 ranged from 0.98 to 0.2 in the depth range of 2 to 14 cm. Addition of sulfate to sediment from the low-sulfate zone resulted in an increase in RI and a decrease in methanogenesis. At all other sites examined, RI ranged from 0.97 to 0.99 and was constant with depth. The results suggested that although methanogenesis was inhibited by sulfate (presumably through the activity of sulfate-reducing bacteria), it was not always limited by sulfate reduction.  相似文献   

7.
The carbon and electron flow pathways and the bacterial populations responsible for transformation of H2-CO2, formate, methanol, methylamine, acetate, glycine, ethanol, and lactate were examined in sediments collected from Knaack Lake, Wis. The sediments were 60% organic matter (pH 6.2) and did not display detectable sulfate-reducing activity, but they contained the following average concentration (in micromoles per liter of sediment) of metabolites and end products: sulfide, 10; methane, 1,540; CO2, 3,950; formate, 25; acetate, 157; ethanol, 174; and lactate, 138. Methane was produced predominately from acetate, and only 4% of the total CH4 was derived from CO2. Methanogenesis was limited by low environmental temperature and sulfide levels and more importantly by low pH. Increasing in vitro pH to neutral values enhanced total methane production rates and the percentage of CO2 transformed to methane but did not alter the amount of 14CO2 produced from [2-14C]acetate (~24%). Analysis of both carbon transformation parameters with 14C-labeled tracers and bacterial trophic group enumerations indicated that methanogenesis from acetate and both heterolactic- and acetic acid-producing fermentations were important to the anaerobic digestion process.  相似文献   

8.
An ecological substrate relationship between sulfate-reducing and methane-producing bacteria in mud of Lake Vechten has been studied in experiments using 14C-labeled acetate and lactate as substrates. Fluoroacetate strongly inhibited the formation of 14CO2 from [U-14C]-acetate and β-fluorolactate gave an inhibition of similar magnitude of the breakdown of [U-14C]-l-lactate to 14CO2 thus confirming earlier results on the specific action of these inhibitors. The turnover-rate constant of l-lactate was 2.37 hr-1 and the average l-lactate pool size was 12.2 μg per gram of wet mud, giving a turnover rate of 28.9 μg of lactate/gram of mud per hr. The turnover-rate constant of acetate was 0.35 hr-1 and the average pool size was 5.7 μg per gram of wet mud, giving a rate of disappearance of 1.99 μg of acetate/gram of mud per hr. Estimations of the acetate turnover rate based upon the formation of 14CO2 from [U-14C]-acetate or [1-14C]-acetate yielded figures of the same magnitude (range 0.45 to 1.74). These and other results suggest that only a portion of the lactate dissimilated is turned over through the acetate pool. The ratio of 14CO2/14CH4 produced from [U-14C]-acetate by mud was 1.32; indicating that 0.862 moles of CH4 and 1.138 moles of CO2 are formed per mole of acetate. From the rate of disappearance of acetate (0.027 μmoles/gram wet mud per hr) and the rate of methane production (0.034 μmoles/gram wet mud per hr), it may be concluded that acetate is an important precursor of methanogenesis in mud (approximately 70%). A substrate relationship between the two groups of bacteria is likely since 14CH4 was formed from [U-14C]-l-lactate.  相似文献   

9.
Summary A mixed culture enriched from sewage sludge and anaerobic digestor effluent was able to degrade cellulose and acetate rapidly and quantitatively to methane and carbon dioxide. The maximum specific rate of gas production was 87 ml/gm cell-h, corresponding to a rate of cellulose utilization of 0.1 g/g cells-h. Acetate, an intermediate in cellulose degradation, was fermented much more rapidly than butyrate or propionate; its maximum utilization rate was first order with a rate constant of 0.34 h–1. Addition of 2-14C-acetate to a digestor fed cellulose showed tht 2% of the methyl groups were oxidized to carbon dioxide. When 1-14C-acetate was added to a similar digestor, 51% of the carboxyl groups were reduced to methane, suggesting that not all the carbon dioxide during simultaneous cellulose and acetate utilization is treated equally. The pulse addition of large amounts of acetate, propionate and butyrate to a cellulose fed digestor was also examined.  相似文献   

10.
In a previous study with Methanobacterium thermoautotrophicum evidence was presented that methanogenesis and autotrophic synthesis of activated acetic acid from CO2 are linked processes. In this study one-carbon metabolism was investigated with growing cultures and in vitro.Serine was shown to be converted into glycine and activated formaldehyde, but only traces of label from [14C-3] of serine appeared in biosynthetic one-carbon positions. This seeming discrepancy could be explained if the same activated formaldehyde is an intermediate in biosynthesis and in methanogenesis from CO2. This hypothesis was supported by demonstrating that [14C-3] of serine and [14C] formaldehyde were rapidly converted into methane, but a small portion of the label was also specifically incorporated into the methyl group of acetate. Methane and acetate synthesis in vitro were similarly stimulated by various compounds. These experiments indicate that the methyl of acetate and methane share common one-carbon precursor(s), i.e. methylene tetrahydromethanopterin, which can also be formed enzymatically from C-3 of serine or chemically from formaldehyde.Propyl iodide 20–40 M) and methyl iodide (1–3 M) completely inhibited growth in the dark. This effect was abolished by light. Methane formation was hardly affected. When 14CH3I was applied at an only slightly inhibitory concentration, 14C was incorporated into the methyl of acetate. In vitro, similar effects on [14C] acetate formation from 14CO2 or from [14C-3] of serine were observed, except that methyl iodide did not inhibit, but even stimulated acetate synthesis. These experiments indicate that a corrinoid is involved in acetate synthesis and probably not in methanogenesis from CO2; the metal is light-reversibly alkylated and functions in methyl transfer to the acetate methyl.  相似文献   

11.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5°C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-14C]acetate to sediment samples resulted in the passage of label mainly to CO2. Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm−3 h−1 compared to 2.5 to 6 nmol cm−3 h−1), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H2 (2.4-fold), and H2 uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H2 release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, ~0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H2 and CO2 where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20°C.  相似文献   

12.
Methanogenesis from acetate by a rod-shaped enrichment culture grown at 60° C was found to require the presence of two organisms rather than a single aceticlastic methanogen. A thermophilic Methanobacterium which grew on H2/CO2 or formate was isolated from the enrichment. Lawns of this methanogen were used to co-isolate an acetate oxidizer in roll tubes containing acetate agar. The rod-shaped acetate oxidizer was morphologically distinct from the methanogen and did not show F420 autofluorescence. The coculture completely degraded 40 mol/ml acetate, and produced nearly equal quantities of methane, and methanogenesis was coupled with growth. The doubling time for the coculture at 60°C was 30–40 h and the yield was 2.7±0.3 g dry wt/mol CH4. Studies with 14C-labelled substrates showed that the methyl group and the carboxyl group of acetate were both converted primarily to CO2 by the coculture and that CO2 was concurrently reduced to CH4. During growth, there was significant isotopic exchange between CO2 and acetate, especially with thecarboxyl position of acetate. These results support a mechanism for methanogenesis from acetate by the coculture in which acetate was oxidized to CO2 and H2 by one organism, while H2 was subsequently used by a second organism to reduce CO2 to CH4. Since the H2 partial pressure must be maintained below 10-4 atm by the methanogen for acetate oxidation to be thermodynamically feasible, this is an example of obligate interspecies hydrogen transfer. This mechanism was originally proposed for a single organism by Barker in 1936.  相似文献   

13.
Summary Anaerobic phenol degrading consortia were selected in sewage sludge and culture conditions were improved to allow maximum degradation rates of 0.9 g/l·d. Phenol had to be added in two portions of 0.45 g/l at intervals of 12 h to keep the fermentation at stable conditions. From U-14C-phenol little benzoate and acetate were formed as intermediates under a N2:CO2 gas phase. Final products were methane and CO2. When methanogenesis was inhibited by BESA, less labeled methane and CO2 were formed and labeled acetate remained undegraded. Turnover rates of phenol were significantly reduced in the presence of a H2:CO2 gas atmosphere and benzoate was formed from phenol and CO2. Acetate did not accumulate remarkably. After the H2:CO2 was converted to methane or was exchanged by N2:CO2 the accumulated benzoate was further degraded to methane and CO2. Elevated pools of acetate in sewage sludge led also to a reduction of the phenol degradation rates and presumably to an increased concentration of benzoate. In fresh sewage sludge benzoate degradation proceeds immediately, while the degradation of phenol starts only after a lag-phase of 3–10 days.  相似文献   

14.
The anaerobic metabolism of acetate was studied in sediments and groundwater from a gas condensate-contaminated aquifer in an aquifer where geochemical evidence implicated sulfate reduction and methanogenesis as the predominant terminal electron-accepting processes. Most-probable-number tubes containing acetate and microcosms containing either [2-14C]acetate or [U-14C]acetate produced higher quantities of CH4 compared to CO2 in the presence or absence of sulfate.14CH4 accounted for 70 to 100% of the total labeled gas in the [14C]acetate microcosms regardless of whether sulfate was present or not. Denaturing gradient gel electrophoresis of the acetate enrichments both with and without sulfate using Archaea-specific primers showed identical predominant bands that had 99% sequence similarity to members of Methanosaetaceae. Clone libraries containing archaeal 16S rRNA gene sequences amplified from sediment from the contaminated portion of the aquifer showed that 180 of the 190 clones sequenced belonged to the Methanosaetaceae. The production of methane and the high frequency of sequences from the Methanosaetaceae in acetate enrichments with and without sulfate indicate that aceticlastic methanogenesis was the predominant fate of acetate at this site even though sulfate-reducing bacteria would be expected to consume acetate in the presence of sulfate.  相似文献   

15.
Methanosarcina barkeri was cultured on methanol, H2-CO2, and acetate, and the 13C/12C ratios of the substrates and the methane produced from them were determined. The discrimination against 13C in methane relative to substrate decreased in the order methanol > CO2 > acetate. The isotopic fractionation for methane derived from acetate was only one-third of that observed with methanol as the substrate. The data presented indicate that the last enzyme of methanogenesis, methylreductase, is not the primary site of isotopic discrimination during methanogenesis from methanol or CO2. These results also support biogeochemical interpretations that gas produced in environments in which acetate is the primary methane precursor will have higher 13C/12C ratios than those from environments where other substrates predominate.  相似文献   

16.
Isomerization of butyrate and isobutyrate was investigated with the recently isolated strictly anaerobic bacterium strain WoG13 which ferments glutarate to butyrate, isobutyrate, CO2, and small amounts of acetate. Dense cell suspensions converted butyrate to isobutyrate and isobutyrate to butyrate. 13C-nuclear magnetic resonance experiments proved that this isomerization was accomplished by migration of the carboxyl group to the adjacent carbon atom. In cell extracts, both butyrate and isobutyrate were activated to their coenzyme A (CoA) esters by acyl-CoA:acetate CoA-transferases. The reciprocal rearrangement of butyryl-CoA and isobutyryl-CoA was catalyzed by a butyryl-CoA:isobutyryl-CoA mutase which depended strictly on the presence of coenzyme B12. Isobutyrate was completely degraded via butyrate to acetate and methane by a defined triculture of strain WoG13, Syntrophomonas wolfei, and Methanospirillum hungatei.  相似文献   

17.
Methane formation from acetate in cell suspensions of Methanosarcina barkeri was inhibited by low concentrations (5 M) of propyl iodide. Inhibition was abolished by short exposure of the suspension to light which strongly indicates that a corrinoid enzyme is involved in methanogenesis from acetate. Propyl iodide (5M) had no effect on the exchange reaction between the carboxyl group of acetate and 14CO2, and on methane formation from methanol, from H2 and methanol, or from H2 and CO2. These findings indicate that the proposed corrinoid enzyme has a role in methyl group transfer to coenzyme M after C-C cleavage of acetate.Dedicated to Professor N. Pfennig on the occasion of his 60th birthday  相似文献   

18.
The pathway of methanol conversion by a thermophilic anaerobic consortium was elucidated by recording the fate of carbon in the presence and absence of bicarbonate and specific inhibitors. Results indicated that about 50% of methanol was directly converted to methane by the methylotrophic methanogens and 50% via the intermediates H2/CO2 and acetate. The deprivation of inorganic carbon species [(HCO3+CO2)] in a phosphate-buffered system reduced the rate of methanol conversion. This suggests that bicarbonate is required as an electron (H2) sink and as a co-substrate for the efficient and complete removal of the chemical oxygen demand. Nuclear magnetic resonance spectroscopy was used to investigate the route of methanol conversion to acetate in bicarbonate-sufficient and bicarbonate-depleted environments. The proportions of [1,2-13C]acetate, [1-13C]acetate and [2-13C]acetate were determined. Methanol was preferentially incorporated into the methyl group of acetate, whereas HCO3 was the preferred source of the carboxyl group. A small amount of the added H13CO3 was reduced to form the methyl group of acetate and a small amount of the added 13CH3OH was oxidised and found in the carboxyl group of acetate when 13CH3OH was converted. The recovery of [13C]carboxyl groups in acetate from 13CH3OH was enhanced in bicarbonate-deprived medium. The small amount of label incorporated in the carboxyl group of acetate when 13CH3OH was converted in the presence of bromoethanesulfonic acid indicates that methanol can be oxidised to CO2 prior to acetate formation. These results indicate that methanol is converted through a common pathway (acetyl-CoA), being on the one hand reduced to the methyl group of acetate and on the other hand oxidised to CO2, with CO2 being incorporated into the carboxyl group of acetate.  相似文献   

19.
Syntrophococcus sucromutans is the predominant species capable of O demethylation of methoxylated lignin monoaromatic derivatives in the rumen. The enzymatic characterization of this acetogen indicated that it uses the acetyl coenzyme A (Wood) pathway. Cell extracts possess all the enzymes of the tetrahydrofolate pathway, as well as carbon monoxide dehydrogenase, at levels similar to those of other acetogens using this pathway. However, formate dehydrogenase could not be detected in cell extracts, whether formate or a methoxyaromatic was used as electron acceptor for growth of the cells on cellobiose. Labeled bicarbonate, formate, [1-14C] pyruvate, and chemically synthesized O-[methyl-14C]vanillate were used to further investigate the catabolism of one-carbon (C1) compounds by using washed-cell preparations. The results were consistent with little or no contribution of formate dehydrogenase and pointed out some unique features. Conversion of formate to CO2 was detected, but labeled formate predominantly labeled the methyl group of acetate. Labeled CO2 readily exchanged with the carboxyl group of pyruvate but not with formate, and both labeled CO2 and pyruvate predominantly labeled the carboxyl group of acetate. No CO2 was formed from O demethylation of vanillate, and the acetate produced was position labeled in the methyl group. The fermentation pattern and specific activities of products indicated a complete synthesis of acetate from pyruvate and the methoxyl group of vanillate.  相似文献   

20.
The O-methyl substituents of aromatic compounds constitute a C1 growth substrate for a number of taxonomically diverse anaerobic acetogens. In this study, strain TH-001, an O-demethylating obligate anaerobe, was chosen to represent this physiological group, and the carbon flow when cells were grown on O-methyl substituents as a C1 substrate was determined by 14C radiotracer techniques. O-[methyl-14C]vanillate (4-hydroxy-3-methoxy-benzoate) was used as the labeled C1 substrate. The data showed that for every O-methyl carbon converted to [14C]acetate, two were oxidized to 14CO2. Quantitation of the carbon recovered in the two products, acetate and CO2, indicated that acetate was formed in part by the fixation of unlabeled CO2. The specific activity of 14C in acetate was 70% of that in the O-methyl substrate, suggesting that only one carbon of acetate was derived from the O-methyl group. Thus, it is postulated that the carboxyl carbon of the product acetate is derived from CO2 and the methyl carbon is derived from the O-methyl substituent of vanillate. The metabolism of O-[methyl-14C]vanillate by strain TH-001 can be described as follows: 314CH3OC7H5O3 + CO2 + 4H2O → 14CH3COOH + 214CO2 + 10H+ + 10e- + 3HOC7H5O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号