首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gap junctions are thought to be necessary for proper tissue function. However, no clear hepatic phenotype has been described in patients lacking connexin 32 (Cx32), the principal gap junction in liver. To determine the physiological role of Cx32 in liver, we compared the response of wild type and Cx32-deficient mice to endotoxin, since this stress increases serum levels of hormones that bind to receptors that are asymmetrically distributed across the hepatic lobule. In hepatocyte couplets isolated from wild type mice, most hepatocytes could transfer microinjected dye to their neighbor even after treatment with endotoxin. Dye transfer was not observed in Cx32-deficient couplets. Treatment of hepatocyte couplets from wild type mice with vasopressin induced calcium (Ca(2+)) waves that crossed the couplets in a concentration-dependent fashion, but the delay in transmission was markedly prolonged at all concentrations in Cx32-deficient couplets. Expression of the vasopressin receptor and the inositol 1,4,5-trisphosphate receptor was not decreased by endotoxin or in Cx32-deficient couplets. Finally, endotoxin caused transient hypoglycemia and cholestasis in wild type animals, but hypoglycemia was slightly prolonged and cholestasis was much worse in Cx32-deficient mice treated with endotoxin. The hepatic response to endotoxin is markedly impaired in the absence of Cx32. Thus, an important role of gap junctions in the liver is to assure integrated and uniform tissue response in times of stress.  相似文献   

3.
Trafficking of the proteins that form gap junctions (connexins) from the site of synthesis to the junctional domain appears to require cytoskeletal delivery mechanisms. Although many cell types exhibit specific delivery of connexins to polarized cell sites, such as connexin32 (Cx32) gap junctions specifically localized to basolateral membrane domains of hepatocytes, the precise roles of actin- and tubulin-based systems remain unclear. We have observed fluorescently tagged Cx32 trafficking linearly at speeds averaging 0.25 μm/s in a polarized hepatocyte cell line (WIF-B9), which is abolished by 50 μM of the microtubule-disrupting agent nocodazole. To explore the involvement of cytoskeletal components in the delivery of connexins, we have used a preparation of isolated Cx32-containing vesicles from rat hepatocytes and assayed their ATP-driven motility along stabilized rhodamine-labeled microtubules in vitro. These assays revealed the presence of Cx32 and kinesin motor proteins in the same vesicles. The addition of 50 μM ATP stimulated vesicle motility along linear microtubule tracks with velocities of 0.4-0.5 μm/s, which was inhibited with 1 mM of the kinesin inhibitor AMP-PNP (adenylyl-imidodiphosphate) and by anti-kinesin antibody but only minimally affected by 5 μM vanadate, a dynein inhibitor, or by anti-dynein antibody. These studies provide evidence that Cx32 can be transported intracellularly along microtubules and presumably to junctional domains in cells and highlight an important role of kinesin motor proteins in microtubule-dependent motility of Cx32.  相似文献   

4.
Hepatic gap junctions in the hepatocarcinogen-resistant DRH rat   总被引:1,自引:1,他引:0  
Although the gap junction or connexin (Cx) is considered to be a tumor-suppressor, it is also required for tumor promotion. Therefore, we examined hepatic gap junctions in hepatocarcinogen-resistant (DRH) rats. Specifically, we investigated gap junction structure and Cx32 expression during normal conditions and in response to a hepatocarcinogen, 3'-methyl-4-dimethylaminoazobenzene (3'-MeDAB). On a basal diet without 3'-MeDAB, hepatic gap junctions and Cx32 protein expression were greater in DRH rats than in control Donryu rats, as evidenced by morphometry, immunohistochemistry and immunoblotting. On a diet containing 3'-MeDAB, gap junctions and expressed Cx32 were increased significantly in Donryu rats, but not in DRH rats. In this condition, Donryu rats lost weight but DRH rats increased relative liver weight. After 3'-MeDAB treatment, cathepsin D expression in hepatocytes was significantly increased only in Donryu rats, indicating that DRH rats were less susceptible to 3'-MeDAB. The abundance of mitogen-activated protein kinase, some constituent of which might be associated with the degree of Cx protein phosphorylation, was reduced to a greater extent in Donryu than in DRH rats after 3'-MeDAB treatment. The resistance of DRH rats to carcinogenesis may be due partially to their stabilized gap junctions, which could coordinate metabolic coupling to evade 3'-MeDAB toxicity.  相似文献   

5.
Gap junction intercellular communication capacity and connexin expression are reportedly involved in cell proliferation. To understand the participation of connexins in biliary duct hyperplasia, a cholestasis model was applied to mice with heterologous deletion of Gja 1, the connexin 43 (Cx43) gene. Heterozygous (Cx43+/-) knockout (KO) and wild-type mice (Cx43+/+) (WT) were submitted to bile duct ligation and euthanized at different time points (48 h, 7 days, and 14 days) after surgery. After euthanasia, the macroscopic and microscopic liver alterations were examined. A histomorphometric study of the livers was performed. For this purpose, a grid containing 100 points was applied to each liver section. The volumetric fraction of bile ducts, hepatocytes, arterioles, and terminal hepatic vein were quantified. Cell proliferation was also quantified by western blot PCNA. High mortality was observed in both genotypes. The heterologous deletion of Cx43 did not affect the biliary duct hyperplasia or most of the other parameters analyzed; however, the Cx43-deficient mice showed decrease in hepatic vein angiogenesis in comparison with the wild-type mice 48 h after surgery. In conclusion, our results indicate that the Cx43 gene heterologous deletion does not affect the biliary duct hyperplasia; on the other hand, connexin 43 deficiencies do affect the hepatic vein angiogenesis, although other studies to understand the details of this influence will be necessary.  相似文献   

6.
In the glandular stomach, gap junctional intercellular communication (GJIC) plays an important role in the gastric mucosal defense system, and loss of GJIC is associated with ulcer formation. In spite of the high incidence of gastric ulcers in horses, particularly at pars nonglandularis, the presence of gap junctions in the equine stomach has not yet been studied. The objective was to obtain basic data on the distribution of gap junction protein connexin 32 (Cx32) in the different regions of normal equine gastric mucosa. Samples of mucosa were taken from seven horses at cardiac, fundic, and pyloric region and pars nonglandularis. To detect Cx32, immunohistochemical staining and Western blot analysis were performed. Corresponding mRNA was shown by RT-PCR and localised in tissue sections by in situ hybridisation. Cx32 was found in the glandular regions, whereas it was not detectable in squamous mucosa. Within the glandular epithelium, Cx32 was abundant in surface and foveolar cells and decreased towards the proliferative zone of the glands. These results suggest that gap junctions develop during the maturation of surface cells. Whether the lack of Cx32 at pars nonglandularis contributes to its susceptibility for developing ulcers, has to be further elucidated.  相似文献   

7.
Primary cultures of adult mouse hepatocytes are shown here to reexpress differentiated hepatocyte features following treatment with 2% DMSO and 10(-7) M glucagon. To examine the roles of gap junctional communication during hepatocyte growth and differentiation, we have compared treated and untreated hepatocytes from connexin (Cx)32-deficient [Cx32 knockout (KO)] and wild-type mice. In untreated cultures, DNA replication of Cx32 KO hepatocytes was markedly higher than of wild types. Although Cx26 mRNA levels remained high at all time points in wild-type and Cx32 KO hepatocytes, Cx32 mRNA and protein in wild-type hepatocytes underwent a marked decline, which recovered in 10-day treated cultures. Increased levels of Cx26 protein and junctional conductance were observed in Cx32 KO hepatocytes at 96 h in culture, a time when cell growth rate was high. Treatment with DMSO/glucagon highly reinduced Cx26 expression in Cx32 KO hepatocytes, and such treatment reinduced expression of both Cx32 and Cx26 expression in wild types. Dye transfer was not observed following Lucifer yellow injection into DMSO/glucagon-treated Cx32 KO hepatocytes, whereas the spread was extensive in wild types. Nevertheless, high junctional conductance values were observed in treated cells from both genotypes. These studies provide a method by which the differentiated phenotype can be obtained in cultured mouse hepatocytes and provide in vitro evidence that expression of gap junctions formed of Cx32 are involved in the regulation of growth of mouse hepatocytes.  相似文献   

8.
Connexin32 (Cx32) is the major gap junction forming protein in liver. Mice deficient in Cx32 demonstrate enhanced liver tumor formation, but are resistant to promotion of hepatocarcinogenesis by the model tumor promoter phenobarbital (PB). Here, we re-evaluate data on the number and sizes of glucose-6-phosphatase (G6Pase)-deficient liver lesions, both in Cx32-wildtype (WT) and Cx32-null male mice, obtained from two earlier experiments with similar protocols but paradoxical outcomes. In these experiments, enzyme-altered lesions were induced in mice of both strains by a single injection of N-nitrosodiethylamine (DEN) at age 6 weeks with a dose of 90 microg/g body weight (experiment 1) or at age 2 weeks with 10 microg/g body weight (experiment 2). Three weeks after DEN treatment groups of mice (sub-divided by Cx32 status) were also started on a PB-containing (0.05%) diet to test the responsiveness of the lesions to the tumor promoter. Additionally, for experiment 1, tumors were analyzed for the presence of Ha-ras and beta-catenin mutations. Based on the mutational analysis and the mathematical analysis of the G6Pase-deficient lesions, the two studies are consistent with the hypothesis of two types of lesions, 'late-type' lesions which are mainly characterized by beta-catenin mutations, and 'early-type' lesions that are frequently (but not exclusively) Ha-ras mutated. This concept affords an explanation as to the differential response seen in the two experiments with regard to Cx32 status and the role of PB as a tumor promoter (experiment 1) or inhibitor (as in experiment 2). Our findings also underscore the importance of the timing (6 weeks versus 2 weeks) of the genotoxic insult in relation to the developmental stage of the liver and the importance of clonal selection during tumor promotion.  相似文献   

9.
We examined the subcellular localization and function of several Cx26 mutants that exhibit both sensorineural deafness and various skin disease phenotypes. To facilitate these aims, all Cx26 mutants were tagged at the carboxyl-terminal with green fluorescent protein (GFP), which has previously been shown not to affect Cx26 transport, assembly or function. In this article we focus on two point mutations (R75W and ΔE42) that occur in the first extracellular loop region of Cx26, a region hypothesized to be critical for correct hemichannel docking between contacting cells. In gap junctional intercellular communication (GJIC)-deficient HeLa cells, both R75W-GFP and ΔE42-GFP were transported to the cell surface and assembled into gap junction-like structures. Neither R75W-GFP nor ΔE42-GFP formed gap junctions that were permeable to Lucifer Yellow suggesting they are loss-of-function mutations. We also examined the phenotype of these two mutations in a rat epidermal keratinocyte (REK) cell line that is capable of undergoing differentiation. Using antibodies against several members of the connexin family reportedly expressed by epidermal keratinocytes, we found these cells endogenously expressed Cx43 and Cx26 but not Cx30, Cx32, or Cx37. When expressed in REK cells, similar to in HeLa cells, R75W-GFP and ΔE42-GFP were assembled at the cell surface into structures that resembled gap junctions. Future experiments will examine the effect of the Cx26 mutants on the function and differentiation of these epidermal keratinocytes.  相似文献   

10.
In the adult rat hepatocyte, gap junction proteins consist of connexin 32 (Cx32) and connexin 26 (Cx26). Previously, we reported that both Cx32 and Cx26 were markedly induced and maintained in primary cultures of adult rat hepatocytes. The reappearing gap junctions were accompanied by increases in both the proteins and the mRNAs, and they were well maintained together with extensive gap junctional intercellular communication (GJIC) for more than 4 weeks. In the present study, we examined the cellular location of the gap junction proteins and the structures in the hepatocytes cultured in our system, using confocal laser microscopy and immunoelectron microscopy of cells processed for Cx32 and Cx26 immunocytochemistry and freeze-fracture analysis. In immunoelectron microscopy, the size of Cx32-immunoreactive gap junction structures on the plasma membrane increased with time of culture, and some of them were larger than those in liver sectionsin vivo.Freeze-fracture analysis also showed that the size of gap junction plaques increased and that the larger gap junction plaques were composed of densely packed particles. These results suggest that in this culture system, not only the synthesis of Cx proteins but also the size of the gap junction plaques was increased markedly. In the adluminal lateral membrane of the cells, Cx32-immunoreactive lines were observed and many small gap junction plaques were closely associated with a more developed tight junction network. In the basal region of the cells, small Cx32- and Cx26-immunoreactive dots were observed in the cytoplasm and several annular structures labeled with the antibody to Cx32 were observed in the cytoplasm. These results indicated the formation and degradation of gap junctions in the cultured hepatocytes.  相似文献   

11.
During muscle development and regeneration of skeletal muscle in mice connexin43 (Cx43) and connexin39 (Cx39) are specifically expressed: Cx43 in satellite cells and myoblasts, whereas Cx39 is exclusively expressed in myogenin-positive cells. We generated Cx39 deficient mice by replacing the coding region of the Gjd4 gene by DNA coding for the enhanced green fluorescent protein eGFP. Adult Cx39 deficient mice exhibit no obvious phenotypic alterations of skeletal muscle compared to wild type mice in the resting state. However, myogenesis in Cx39 deficient embryos is accelerated as indicated by increased myogenin expression on ED13.5 and ED16.5 and increased expression of Cx43 in developing skeletal muscle. In addition, the regeneration process of skeletal muscle in Cx39 deficient mice is accelerated as shown by a 2 day earlier onset of MyoD and myogenin expression, relative to wild type littermates. Interestingly, Cx43 expression was also upregulated in Cx39 deficient mice during regeneration of skeletal muscle. We hypothesize that Cx43 may compensate for the loss of Cx39 during myogenesis and regeneration.  相似文献   

12.
13.
Gene ablation studies in mice have revealed roles for gap junction proteins (connexins) in heart development. Of the 20 connexins in vertebrates, four are expressed in developing heart: connexin37 (Cx37), connexin40 (Cx40), connexin43 (Cx43), and connexin45 (Cx45). Although each cardiac connexin has a different pattern of expression, some heart cells coexpress multiple connexins during cardiac morphogenesis. Since different connexins could have overlapping functions, some developmental phenotypes may only become evident when more than one connexin is ablated. In this study, we interbred Cx40(-/-) and Cx43(-/-) mice to generate mice lacking both Cx40 and Cx43. Cx40(-/-)Cx43(-/-) mice die around embryonic day 12.5 (E12.5), much earlier than either Cx40(-/-) or Cx43(-/-) mice, and they exhibit malformed hearts with ventricles that are abnormally rotated, suggesting a looping defect. Some Cx40(-/-)Cx43(-/-) animals also develop head defects characteristic of exencephaly. In addition, we examined mice lacking both Cx40 and Cx37 and found a high incidence of atrial and ventricular septal defects at birth. These results provide further evidence for the importance of gap junctions in embryonic development. Moreover, ablating different pairs of cardiac connexins results in distinct heart defects, suggesting both common and unique functions for Cx40, Cx43, and Cx37 during cardiac morphogenesis.  相似文献   

14.
A considerable amount of evidence has established that gap junctional intercellular communication (GJIC) suppresses tumor development by halting the stage of tumor promotion. Consistently, GJIC is downregulated in tumors. The downregulation of GJIC is caused by not only the reduced expression level of connexin proteins but also their aberrant cytoplasmic localization. Although it has long been thought that cytoplasmic localization of connexin proteins is merely one of the mechanisms of the downregulation of GJIC, careful studies with human tumor samples have indicated that the expression level of intracytoplasmic connexin proteins correlates well with the grade of malignancy and the progression stage of tumors. Hypothesizing that intracytoplasmic connexin proteins should have their proper functions and that their increase should facilitate tumor progression such as cell migration, invasion and metastasis, we examined the effects of overexpressed connexin32 (Cx32) protein on the phenotype of human HuH7 hepatoma cells, which express a basal level of endogenous Cx32 only in cytoplasm. The cells were retrovirally transduced with the Tet-off Cx32 construct so that withdrawal of doxycycline from the culture medium could induce overexpression of Cx32 protein in cytoplasm. Even when overexpressed, Cx32 protein was retained in cytoplasm, i.e., Golgi apparatuses, and did not induce GJIC. However, overexpression of Cx32 protein in cytoplasm enhanced both the motility and the invasiveness of HuH7 cells and induced metastasis when the cells were xenografted into SCID mice. Taken together, cytoplasmic accumulation of connexin proteins may exert effects favorable for tumor progression.  相似文献   

15.
目的 在HeLa宫颈癌细胞中研究不同浓度的多西环素对缝隙连接蛋白Cx26/Cx32表达及由其形成的缝隙连接通讯功能的影响.方法 采用Western印迹检测HeLa细胞中Cx26/Cx32的蛋白表达;荧光示踪实验用于检测HeLa细胞中由Cx26/Cx32形成的缝隙连接通讯功能.结果 Western印迹结果显示多西环素在0.01~1 μg/ml的范围内,随着剂量的增加,Cx26/Cx32蛋白表达水平增加;荧光示踪实验结果显示HeLa细胞之间的荧光传递随着多西环素增加也相应增强.结论 采用加入不同浓度多西环素的方法,可制备缝隙连接通讯功能强弱不同的细胞模型.  相似文献   

16.
Connexins (Cx) are considered to play a crucial role in the differentiation of epithelial cells and to be associated with adherens and tight junctions. This review describes how connexins contribute to the induction and maintenance of tight junctions in epithelial cells, hepatic cells and airway epithelial cells. Endogenous Cx32 expression and mediated intercellular communication are associated with the expression of tight junction proteins of primary cultured rat hepatocytes. We introduced the human Cx32 gene into immortalized mouse hepatic cells derived from Cx32-deficient mice. Exogenous Cx32 expression and the mediated intercellular communication by transfection could induce the expression and function of tight junctions. Transfection also induced expression of MAGI-1, which localized at adherens and tight junction areas in a gap junctional intercellular communication (GJIC)–independent manner. Furthermore, expression of Cx32 was related to the formation of single epithelial cell polarity of the hepatic cells. On the other hand, Cx26 expression, but not mediated intercellular communication, contributed to the expression and function of tight junctions in human airway epithelial cells. We introduced the human Cx26 gene into the human airway epithelial cell line Calu-3 and used a model of tight junction disruption by the Na+/K+-ATPase inhibitor ouabain. Transfection with Cx26 prevented disruption of both tight junction functions, the fence and barrier, and the changes of tight junction proteins by treatment with ouabain in a GJIC–independent manner. These results suggest that connexins can induce and maintain tight junctions in both GJIC-dependent and –independent manners in epithelial cells.  相似文献   

17.
Connexin 32 (Cx32) is the main gap junction protein in hepatocytes and plays an important role in the regulation of signal transfer and growth control in the liver by constructing gap junction channels and gap junctional intercellular communication (GJIC). In this study, the human Cx32 gene was transfected into a hepatoma cell line (HepG2) that showed aberrant expression of Cx32 and was deficient in GJIC. Cx32-transfected HepG2 not only expressed a higher level of Cx32 mRNA, but also showed increased GJIC compared with HepG2 and vector-transfected HepG2. Furthermore, the liver functions of ammonia removal and albumin secretion of HepG2 were markedly enhanced with Cx32 gene transfection. It may be expected to improve the cellular functions of the hepatoma cell line by Cx32 gene transfection and serve to develop an efficacious bioartificial liver.  相似文献   

18.
缝隙连接蛋白Connexin 26在乳腺导管上皮癌变中的调节作用   总被引:3,自引:0,他引:3  
目的研究缝隙连接蛋白Connexin 26(Cx26)与乳腺癌发生的相关性。方法选取手术切除的人乳腺导管内癌和浸润性导管癌标本88例,应用免疫组化S-P法及Western blot研究癌组织和癌旁组织中Cx26蛋白表达,统计学分析癌组织和癌旁组织中Cx26蛋白表达的差异,探讨Cx26表达与乳腺癌发生的相关性。结果癌旁组织中Cx26蛋白弥散于细胞浆中,在癌组织中Cx26蛋白明显减弱或消失,卡方检验表明Cx26蛋白在乳腺癌组织和癌旁组织中的表达差异具有统计学意义(P〈0.05),Western blot结果亦清楚显示在癌组织中Cx26蛋白表达减弱(P〈0.001)。结论Cx26蛋白减弱或缺失参与调控乳腺导管癌的发生过程。  相似文献   

19.
In the current study we describe the changes of overall organization of lens fiber cells in connexin 46 (Cx46) and connexin 50 (Cx50) knockout mice. Morphometric analyses and the application of immunocytochemical techniques revealed that in Cx46 knockout lens (Cx46 -/-), where Cx50 is expressed alone, the postnatal differentiation of secondary fiber cells proceeds faster and is characterized by an increased number of smaller fiber cells. Conversely, in Cx50 knockout mice (Cx50 -/-), the lenticular mass is considerably reduced and characterized by a small number of fiber cells added during the postnatal period. The process of terminal differentiation was impaired and generated larger fiber cells still possessing cytoplasmic organelles. Freeze-fracture and fracture labeling revealed that the junctional assembly, packing organization and topographic interactions between connexons and MP26 differed when Cx46 and Cx50 were co-assembled in the wild-type or expressed separately in the two distinct knockout phenotypes. Filipin cytochemistry provided indirect evidence that Cx46 and Cx50 expressed alone are recruited into different lipid environments. Our results represent the structural proof that interaction of connexins and MP26 contributes to the overall organization of the fiber cells.  相似文献   

20.
Gap junctional intercellular communication (GJIC) is thought to play a crucial role in cell differentiation. Small gap junction plaques are frequently associated with tight junction strands in hepatocytes, suggesting that gap junctions may be closely related to the role of tight junctions in the establishment of cell polarity. To examine the exact role of gap junctions in regulating tight junctions, we transfected connexin 32 (Cx32), Cx26, or Cx43 cDNAs into immortalized mouse hepatocytes derived from Cx32-deficient mice and examined the expression and function of the endogenous tight junction molecules. In transient wild-type Cx32 transfectants, immunocytochemistry revealed that endogenous occludin was in part localized at cell borders, where it was colocalized with Cx32, whereas neither was detected in parental cells. In Cx32 null hepatocytes transfected with Cx32 truncated at position 220 (R220stop), wild-type Cx26, or wild-type Cx43 cDNAs, occludin was not detected at cell borders. In stable wild-type Cx32 transfectants, occludin, claudin-1, and ZO-1 mRNAs and proteins were significantly increased compared to parental cells and all of the proteins were colocalized with Cx32 at cell borders. Treatment with a GJIC blocker, 18 beta-glycyrrhetinic acid, resulted in decreases of occludin and claudin-1 at cell borders in the stable transfectants. The induction of tight junction proteins in the stable transfectants was accompanied by an increase in both fence and barrier functions of tight junctions. Furthermore, in the stable transfectants, circumferencial actin filaments were also increased without a change of actin protein. These results indicate that Cx32 formation and/or Cx32-mediated intercellular communication may participate in the formation of functional tight junctions and actin organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号