首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to document cytogenetic damage associated with air pollution and, possibly, with health effects in the city of Catania, Sicily (Italy), we analyzed the induction of chromosomal aberrations by extractable agents from airborne particulate matter in a Chinese hamster epithelial liver (CHEL) cells. These cells retain their metabolic competence to activate different classes of promutagens/procarcinogens into biologically active metabolites. Airborne particulate matter was obtained from two stationary samplers (stations I and II) in two areas endowed by an elevated car transit in the centre of Catania. The results obtained clearly indicated that airborne particulate matter from both stations I and II proved to be clastogens in CHEL cells but not in Chinese hamster ovary (CHO) cells without metabolic activation, indicating that airborne particulate mixtures need to be metabolically converted before exerting their genotoxic potential. On the basis of these results we can assert that the test system employed to identify the cytogenetic potential of airborne particulate matter is useful and profitable for environmental control, and helpful to plan specific actions aimed at reducing the hazards derived from exposure to polluted air.  相似文献   

2.
Recently numerous attempts have been made to reduce the use of vertebrate animals in laboratory experiments to evaluate general and acute toxicity, mutagenesis and teratogenesis of new drugs or chemicals. One common approach is to use established, proliferating cell lines that preserve differentiated functions such as the competence to metabolize xenobiotics. To this end a continuous Chinese hamster epithelial liver cell line (CHEL cells) was established, cultured as used for mutagenesis studies. Structurally different promutagens, such as 7,12-dimethylbenz[a]anthracene (7,12-DMBA), benzo[a]pyrene (B(a)P), aflatoxin B1 (AB1) and cyclophosphamide (CP), were used in order to check and validate the test system. anti-Chrysene-1,2-diol 3,4-epoxide (CDE) and mitomycin C (MMC) were taken as representatives of direct mutagens. The genetic change induced by the mutagens was quantified by measuring mutation frequencies at the HGPRT locus. Several parameters, such as mutant expression time for each chemical, cell density for selection of mutants and enzymatic characterization for HGPRT phenotype, were examined to establish the optimal assay conditions. All promutagens analyzed significantly affected either the cloning efficiency and/or the mutant frequency of CHEL cells after 24 h of exposure. In addition, various enzyme activities involved in the metabolism of the promutagens were determined in CHEL cells, under the experimental conditions of chemical exposure used in the mutagenesis assay. The enzyme activities were compared with those found in uninduced Chinese hamster liver.  相似文献   

3.
Increased protein kinase C (PKC) activity has been implicated in the pathogenesis of a number of diabetic complications, and high concentrations of glucose have been shown to increase PKC activity. The present study was designed to examine the role of PKC in diabetes-induced (and glucose-induced) cardiomyocyte dysfunction and insulin resistance (measured by glucose uptake). Adult rat ventricular myocytes were isolated from nondiabetic and type 1 diabetic animals (4-5 days post-streptozotocin treatment), and maintained overnight, with/without the nonspecific PKC inhibitor chelerythrine (CHEL = 1 microM). Myocyte mechanical properties were evaluated using a video edge-detection system. Basal and insulin-stimulated glucose uptake was measured with [3H]-2-deoxyglucose. Blunted insulin-stimulated glucose uptake was apparent in diabetic myocytes, and both mechanical dysfunctions (e.g., slowed shortening/relengthening) and insulin resistance were maintained in culture, and normalized by CHEL. Cardiomyocytes isolated from nondiabetic animals were cultured in a high concentration of glucose (HG = 25.5 mM) medium, with/without CHEL. HG myocytes exhibited slowed shortening/relengthening and impaired insulin-stimulated glucose uptake compared to myocytes cultured in normal glucose (5.5 mM), and both impairments were prevented by culturing cells in CHEL. Our data support the view that PKC activation contributes to both diabetes-induced abnormal cardiomyocyte mechanics and insulin resistance, and that elevated glucose is sufficient to induce these effects.  相似文献   

4.
The intensive use of herbicides over the last few decades has caused a general increase of environmental pollution. It is thus very important to evaluate the possible genotoxic properties of these chemical compounds as well as identifying their mode of action. Phenylurea herbicides are selective agents widely used for the control of infestant plants. Of these herbicides, which are widely used in agriculture, we analysed four of the less intensively studied molecules. More precisely, we investigated the genotoxic effects of fenuron, chlorotoluron, diuron, and difenoxuron by analyses of chromosomal aberrations (CAs) and sister chromatid exchange (SCE) in exposed mammalian cells. We used the Chinese hamster ovary (CHO) and epithelial liver (CHEL) cell lines, endowed with the absence or the presence, respectively, of an enzymatic system to activate pro-mutagenic compounds. Our results show that all herbicides tested induce, at high concentrations, an increasing number of CAs in non-metabolising CHO cells. Instead, in the exposed CHEL cell line, the four herbicides induced CAs also at the lowest dose-level. In the CHEL cells, a statistically significant increase of SCE was also observed. The phenylurea herbicides showed direct genotoxic activity, but the cytogenetic effects were greatly enhanced after metabolic conversion. These data, together with other information on phenylurea herbicides, are of great interest from the environmental point of view, and for human health. In fact, intensive use of herbicides contaminates soil, surface water, groundwater and agricultural products, and thus should be taken in particular consideration not only for those initiatives to specifically protect exposed workers, but also to safeguard the health of consumers of agricultural products.  相似文献   

5.
Rat multidrug resistant protein 2 (Mrp2; Abcc2), an ATP-driven pump located on the canalicular domain of hepatocytes, exports glutathione S-conjugates (GS-X) and GSH among its wide variety of substrates. Previous studies have shown that chelerythrine (CHEL), a quaternary benzophenanthridine cation, reacts with GSH to form a reversible adduct under physiological conditions. Here we report that CHEL can strongly stimulate GSH efflux by Mrp2, when it is constitutively expressed in polarized canine kidney cells, thereby leading to the depletion of cellular GSH. Transepithelial transport experiments indicate that Mrp2 transports GSH and CHEL with a 1:1 stoichiometry, which can be readily inhibited by GS-bimane, a GS-X substrate for Mrp2. Moreover, CHEL can block Mrp2-mediated leukotriene C4 uptake by membrane vesicles with an IC50 approximately 100 microM in the presence of GSH, but not S-methyl GSH or ophthalmic acid. Thus the thiol group of GSH is required for inhibition of Mrp2 in the presence of CHEL. Our results suggest that CHEL stimulates GSH efflux by forming a reversible GS-CHEL adduct, which is transported by Mrp2 and dissociates extracellularly.  相似文献   

6.
The resistance of Chinese hamster epithelial liver cells (CHEL) and Chinese hamster fibroblasts (V79) towards toxic purine analogues has been determined. The liver cells are more sensitive than fibroblasts to 6-thioguanine (6-TG), 8-azaguanine (8-AZ) and 2,6-diaminopurine (DAP). The hypoxanthine-guanine (HGPRT) and adenine phosphoribosyl transferase (APRT) activities of extracts of CHEL cells were lower than those of corresponding extracts of V79. The level of 5'-nucleotidase was about 5-fold higher in the epithelial cells. It appears that HGPRT and APRT activities of extracts of liver epithelial cells are masked or reduced by 5'-nucleotidase activity and other inhibitors. The significance of these findings is discussed.  相似文献   

7.
A recently established rat liver cell line, RL-12, exhibits an unusually high sensitivity to the genotoxic effects of a number of selected procarcinogens. Significant reductions in cell survival (D37%) and induction of sister chromatid exchanges were obtained with 1 X 10(-9) M benzo[a]pyrene and 2 X 10(-8) M 7,12-dimethylbenz[a]anthracene. This rat liver epithelial cell line may serve as a useful model system to study the metabolic activation of procarcinogens to their ultimate genotoxic form.  相似文献   

8.
Whole cell preparations derived from collagenase-treated rat liver were cocultivated overnight with stationary (non-shaking) cultures of L5178Y/TK+/- cells in the presence of 8 different chemicals selected as representative aromatic amine, polycyclic hydrocarbon, or nitrosamine procarcinogens. When tested in the presence of hepatocytes, 2-aminoanthracene, 2-aminofluorene, N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodipropylamine, 3-methylcholanthrene, and benzo[a]pyrene all produced substantial dose-dependent increases in trifluorothymidine-resistant variants compared to solvent controls after 20 h total exposure time. Only N-nitrosodipropylamine (DPrN) and N-nitrosodiethylamine (DEN) produced any dose-related mutagenic activity in similar experiments where hepatocytes were omitted; however, the response for the DPrN was quite variable at high doses in the absence of hepatocytes and the mutagenic response for the DEN was consistently enhanced at all dose levels by the presence of hepatocytes. Benzanthracene was not active in the presence of whole hepatocytes, even when tested with cells from a rat pretreated 24 h earlier with 20 mg/kg benzanthracene. Excepting benzanthracene, these data suggest that rat hepatocytes can be used to active 3 types of procarcinogens to mutagens in the L5178Y/TK gene mutation assay.  相似文献   

9.
Rat lung microsomal cytochrome P-450 (P-450) enzymes have been characterized with regard to their catalytic specificities towards activation of several procarcinogens to genotoxic metabolites in Salmonella typhimurium TA1535/pSK1002. We first examined the roles of rat liver microsomal P-450 enzymes in the activation of benzo[a]pyrene and its 7,8-diol enantiomers to genotoxic products, and found that P-450 1A1 is a major catalyst for the activation of these potential procarcinogens in rat livers. Using lung microsomes isolated from rats treated with various P-450 inducers we obtained evidence that at least three P-450 enzymes are involved in the activation of several procarcinogens. Immunoinhibition studies support the view that benzo[a]pyrene and its 7,8-diol derivatives, other dihydrodiol derivatives of polycyclic aromatic hydrocarbons, and 3-amino-1-methyl-5H-pyrido[4,3-b]indole are activated to genotoxins mainly by rat P-450 1A1, which is inducible in rat lungs by 5,6-benzoflavone and the polychlorinated biphenyl mixture Aroclor 1254. Activation of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline and 2-amino-3-methylimidazo[4,5-f]quinoline may be catalyzed by another P-450 enzyme because the activities were not induced by treatment with 5,6-benzoflavone or Aroclor 1254. The observation that both activities were inhibited by antibodies raised against P-450 1A2 and by 7,8-benzoflavone suggests a role for an enzyme of P-450 1A family, probably P-450 1A2, in rat lung microsomes. The activation of aflatoxin B1 and sterigmatocystin appears to be catalyzed by other P-450 enzyme(s) rather than the P-450 1A family as judged by the different responses of activities to the P-450 inducers and the specific antibodies in rat lung microsomes. Interestingly, lung microsomal activation of several procarcinogens was found to be suppressed in rats treated with isosafrole and pregnenolone 16 alpha-carbonitrile. Thus, the results support the roles of different P-450 enzymes in the activation of procarcinogens in rat lung microsomes.  相似文献   

10.
Maternal exposures may induce chromosome damage and birth defects in the fetus. Polymorphic variation in genes coding for enzymes involved in metabolic activation and detoxification of environmental procarcinogens may account for some of the differences in chromosome aberration frequencies in newborns. In this study, 40 mothers completed questionnaires regarding exposures they received during their pregnancy. Umbilical cord blood samples were analyzed for chromosome aberrations. An average of 1020 metaphase cell equivalents (equal to 1020 G-banded cells) were examined from each newborn. In 26 of the newborns, genotyping analysis was performed for genes functioning in metabolic activation and detoxification (cytochrome P450 genes: CYP2D6 and CYP1A1, and phase II genes: NAT1, NAT2, GSTT1, GSTM1, GSTP1, and epoxide hydrolase). A significant association between the CYP1A1 MspI polymorphism and chromosome aberration frequencies was observed in the newborns (p=0.02), with heterozygotes showing higher aberration frequencies than the wild type homozygotes. Some large differences in chromosome aberration frequencies for other genotypes were also noted, but these were not statistically significant. Exposure to tobacco smoke in utero also appeared to increase translocation frequencies. The mean frequency of translocations per 100 cell equivalents from newborns of mothers who smoked during pregnancy was significantly higher than that of newborns whose mothers did not smoke (0.21 vs. 0.11, respectively, p=0.045).  相似文献   

11.
12.
The genotoxicity of benzo[a]pyrene, cyclophosphamide, 2-aminoanthracene, 2-nitrofluorene, nitrosated coal-dust extracts, and cigarette-smoke condensate were tested with the micronucleus assay using an established mammalian cell line. The results showed that all chemicals and complex mixtures studied induced micronuclei in BALB/c-3T3 cells. These results indicate that BALB/c-3T3 cells are capable of activating certain promutagens and procarcinogens. It seems, therefore, that in addition to cell transformation, the micronucleus assay in BALB/c-3T3 cells without an exogenous activation system may be useful for in vitro studies to detect genotoxic chemicals and complex mixtures.  相似文献   

13.
With the intention of assessing the general performance, sensitivity and the underlying mechanisms of somatic cell mutagenicity assays in Drosophila, a study was undertaken to compare the effectiveness of 5 procarcinogens and 4 direct-acting agents in the white/white-coral eye mosaic assay (SMART) with their activity in early (premeiotic) male and female germ-cell stages, after exposure of Drosophila larvae. The outcome indicated a lack of agreement in the results from recessive lethal assays (SLRL) in comparison with the somatic mutation and recombination test (SMART). The procarcinogens 2-naphthylamine (NA), 3-methylcholanthrene (MC), 9,10-dimethylanthracene (DA) and 7,12-dimethylbenz[a]anthracene (DMBA), and the direct-acting mutagens bleomycin (BM), methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS), were quite efficient in producing somatic recombination and mutations in white/white-coral larvae, as opposed to only weak effects in early germ-cell stages. 2-Acetylaminofluorene (2AAF) showed marginal effects in both germ cells and somatic tissue after exposure of female larvae, but was inactive in testis. The discrepancy in mutational response between somatic cells and premeiotic germ cells is most impressive for MMS and BM. There is sufficient evidence for attributing a good sized proportion of the encountered variation to efficient error-free DNA repair of premutational damage and to segregational elimination during meiosis of deleterious mutations: (1) The efficient point mutagen ENU was the but one agent producing high levels of viable genetic alterations in early germ cells and in somatic cells. A similar behaviour was previously described for diethylnitrosamine, which ethylates DNA in the same fashion as ENU. (2) In early germ-cell stages of mei-9L1 male larvae, MMS induced multiple mutations (putative clusters) at a low dose differing by a factor 20-40 from those needed to produce an equivalent response in repair-competent strains. This is consistent with the concept of an active excision repair in premeiotic cells. (3) In the case of EMS, next to DNA repair, germinal selection seems to restrict the realization of EMS-induced genetic damage in premeiotic cells. (4) Bleomycin-induced chromosome aberrations caused high mortality rates in males (hemizygous for an X-chromosome) but not in females. MMS and BM, agents known to show preference for chromosome aberration induction, produced 3-6-fold higher rates of somatic mutational events (SME) in female genotypes as compared with the other sex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
We recently constructed a Chinese hamster V79-derived cell line that stably expresses human cytochrome P450 (CYP) 2E1 and human sulphotransferase (SULT) 1A1. These enzymes are involved in the bioactivation of numerous promutagens/procarcinogens, but are not taken into account in standard in vitro mutagenicity assays. Various carbohydrate pyrolysis products and other food contaminants that induce tumours or preneoplastic lesions in laboratory animals are inactive or only weakly active in standard in vitro genotoxicity assays. This is the case for acrylamide, furan, 5-hydroxymethylfurfural, nitrofen and N-nitrosodimethylamine. These compounds were investigated for induction of sister chromatid exchange (SCE) in V79-hCYP2E1-hSULT1A1 cells. All test compounds showed positive results over a wide concentration range, starting at 0.01 microM for N-nitrosodimethylamine, 3 microM for furan, 12.5 microM for nitrofen, 20 microM for 5-hydroxymethylfurfural, and 200 microM for acrylamide. The concentration-response curve of furan was unusual, as this compound induced a statistically significant, but rather constant and weak increase in SCE over an extremely wide concentration range (3-16,000 microM). Furan was slightly less active, whereas the remaining compounds were much less active in the parental V79 cell line than in V79-hCYP2E1-hSULT1A1 cells. Compared to many other genotoxic effects, the study of SCE only requires small numbers of cells (and incubation volumes) and usually is detected even at low concentrations of the genotoxicant. Therefore, induction of SCE in V79-hCYP2E1-hSULT1A1 cells may be useful in the genotoxicity testing of preparations of heated food and in their bioassay-directed fractionation.  相似文献   

15.
Cytochrome P450 1B1 (CYP1B1) is a recently cloned dioxin-inducible form of the cytochrome P450 supergene family of xenobiotic-metabolizing enzymes. CYP1B1 is constitutively expressed mainly in extrahepatic tissues and is inducible by aryl hydrocarbon receptor ligands. Human CYP1B1 is involved in activation of chemically diverse human procarcinogens, including polycyclic aromatic hydrocarbons and some aromatic amines, as well as the endogenous hormone 17 beta-estradiol. The metabolism of 17 beta-estradiol by CYP1B1 forms 4-hydroxyestradiol, a product believed to be important in estrogen-induced carcinogenesis. Although the distribution of CYP1B1 mRNA and protein in a number of human normal tissues has been well documented, neither the cells expressing CYP1B1 in individual tissue nor the intracellular localization of the enzyme has been thoroughly characterized. In this study, using nonradioactive in situ hybridization and immunohistochemistry, we examined the cellular localization of CYP1B1 mRNA and protein in a range of human normal tissues. CYP1B1 mRNA and protein were expressed in most samples of parenchymal and stromal tissue from brain, kidney, prostate, breast, cervix, uterus, ovary, and lymph nodes. In most tissues, CYP1B1 immunostaining was nuclear. However, in tubule cells of kidney and secretory cells of mammary gland, immunoreactivity for CYP1B1 protein was found in both nucleus and cytoplasm. This study demonstrates for the first time the nuclear localization of CYP1B1 protein. Moreover, the constitutive expression and wide distribution of CYP1B1 mRNA and protein in many human normal tissues suggest functional roles for CYP1B1 in the bioactivation of xenobiotic procarcinogens and endogenous substrates such as estrogens. (J Histochem Cytochem 49:229-236, 2001)  相似文献   

16.
The activities to activate and detoxify procarcinogens were compared in intact hepatocytes from humans, Sprague-Dawley rats and Syrian golden hamsters. Mutagenic metabolites that were released from the isolated hepatocytes were detected by mutation induction in co-cultivated Salmonella typhimurium TA98. Hepatocytes from the 3 animal species all activated aflatoxin B1 (AFB1), acetylaminofluorene (AAF) and aminofluorene (AF) and released active metabolites to induce mutation in the indicator S. typhimurium T98. Hamster hepatocytes were more effective than were human and rat hepatocytes to mediate mutation of Salmonella TA98 by AFB1, AAF and AF. Hepatocytes of human and rat failed to mediate mutation by 1-aminopyrene (1-AP). Indeed, at low concentration of 1-AP and 1-nitropyrene (1-NP), the presence of the hepatocytes decreased the number of TA98 revertants. Only at higher concentrations of 1-aminopyrene and 1-nitropyrene did hamster hepatocytes increase mutation frequencies of indicator cells over the control groups. It seems that hepatocytes, particularly human hepatocytes, are better able to absorb and detoxify 1-AP and 1-NP than to activate them.  相似文献   

17.
The radioprotective effect of cysteamine combined with the modification of the chromatin state by sodium butyrate has been studied using V-79 and CHEL lines of Chinese hamster cells and HeLa cells. Sodium butyrate enhances the chromatin sensitivity to nucleases and removes the radioprotective effect of cysteamine as measured by the yield of cells with chromosome aberrations. As is indicated by changes in the intensity of fluorescence of the DNA-ethidium bromide complex, measured by laser flow cytometry, the protective agent decreases the binding of the dye with both irradiated and nonirradiated DNA whereas ionizing radiation and sodium butyrate increase thereof. It is concluded that the radioprotective effect of cysteamine depends in its ability to reduce the susceptibility of DNA to nucleases.  相似文献   

18.
T.B. HANSEN AND S. KNØCHEL. 1996. Heating at slowly rising temperatures is suspected to enhance thermotolerance in Listeria monocytogenes and, since anaerobic environments have been shown to facilitate resuscitation of heat-injured cells of this micro-organism, concern may arise about the possibility of L. monocytogenes surviving in minimally preserved products. The effect of rapid (> 10°C min-1) and slow (0.3 and 0.6°C min-1) heating on survival of L. monocytogenes in sous vide cooked beef was therefore examined at mild processing temperatures of 56, 60 and 64°C. No statistically significant difference ( P = 0.70) was observed between the tested heating regimes. Since the average pH of beef was low (5.6), and little or no effect was observed, a pH-dependency of heat shock-induced thermotolerance in L. monocytogenes is suggested to account for this result.  相似文献   

19.
The human diploid fibroblast culture, WI-38 was analyzed for chromosomal damage after 24 h exposures to benzo(a)pyrene (BP), 3-methylcholanthrene (MCA), n-methyl-n'-nitrosoguanidine (MNNG), 4-nitroquinoline-1-oxide (4NQO), pyrene and caffeine. A low concentration of 4NQO (0.15 micron) and MNNG (1.9 micron) produced breakage and exchange figures. A relatively high concentration of caffeine (1300 micron) caused breakage. The other compounds (BP, MCA and pyrene) caused little or no increase in damage above the control levels. A 1-h pulse exposure of WI-38 cells to BP (40 micron) in the presence of a rat liver homogenate supernate (S-9) resulted in damage significantly greater than the untreated cells or cells treated with BP alone. 4NQO (0.25 micron) produced exchange figures after a similar 1-h exposure, but this effect was eliminated by the S-9. A much higher concentration of caffeine (10,300 micron) was required to cause breakage greater than control levels after a one hour exposure. The results indicate a possible short term in vitro human cell system for distinguishing carcinogens, procarcinogens, and noncarcinogens.  相似文献   

20.
Typically, chemopreventive agents involve either induction of phase II detoxifying enzymes and/or inhibition of cytochrome P450 enzymes (CYPs) that are required for the activation of procarcinogens. In this study, we investigated the protective effects of phloretin against aflatoxin B1 (AFB1) activation to the ultimate carcinogenic intermediate, AFB(1)-8, 9-epoxide (AFBO), and its subsequent detoxification. Phloretin markedly inhibited formation of the epoxide with human liver microsomes in a dose-dependent manner. Phloretin also inhibited the activities of nifedipine oxidation and ethoxyresorufin O-deethylase (EROD) in human liver microsomes. These data show that phloretin strongly inhibits CYP1A2 and CYP3A4 activities, which are involved in the activation of AFB1. Phloretin increased glutathione S-transferase (GST) activity of alpha mouse liver 12 (AML 12) cells in a dose-dependent manner. GST activity toward AFBO in cell lysates treated with 20 μM phloretin was 23-fold that of untreated control cell lysates. The expression of GSTA3, GSTA4, GSTM1, GSTP1 and GSTT1 was induced by phloretin in a dose-dependent manner in AML 12 cells. GSTP1, GSTM1, and GSTT1 were able to significantly increase the conjugation of AFBO with glutathione. Concurrently, induction of the GST isozyme genes was partially associated with the Nrf2/ARE pathway. Taken together, the results demonstrate that phloretin has a strong chemopreventive effect against AFB1 through its inhibitory effect on CYP1A2, CYP3A4, and its inductive effect on GST activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号