首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adair [Bioelectromagnetics 14:1–4, 1993] writes that “the effects of 60 Hz magnetic fields of 5 μT (50 mG) or less on biological structures holding magnetite (Fe3O4) are shown to be much smaller than those from thermal agitation; hence such interactions cannot be expected to be biologically significant.” This conclusion is questioned, because it appears to be based on a model that probably has very limited validity for pertinent biological systems. Furthermore, biologically plausible parameters can be selected to show that even this particular model does not exclude biologically significant effects of 60 Hz magnetic fields below 5 μT. Reported experimental results indicate effects in mammals of 50 Hz fields at the 1 μT level. © 1994 Wiley-Liss, Inc.  相似文献   

2.
We solved the differential equation describing combined action of DC and AC magnetic fields on thermal motion of ions in a biological macromolecule. The solution showed the occurrence of a new set of resonant peaks for ion oscillations under the influence of magnetic fields. After establishment of steady ion oscillations in the macromolecule interior that is well shielded from the action of small particles of the medium surrounding this molecule, the change in energy of ion thermal motion could be sufficient to alter the conformation state of the macromolecule. On this basis, a diversity of biological phenomena can be explained, including the appearance of the known "frequency" and "amplitude" windows, without any resort to the ideas of participation of cyclotron or parametric resonances in these effects.  相似文献   

3.
This review considers the Russian scientific literature on the influence of weak static and of low-frequency alternating magnetic fields on biological systems. The review covers the most interesting works and the main lines of investigation during the period 1900 to the present. Shown here are the historical roots, beginning with the ideas of V. Vernadsky and A. Chizhevsky, which led in the field of Russian biology to an increasing interest in magnetic fields, based on an intimate connection between solar activity and life on the Earth, and which determined the peculiar development of Russian magnetobiology. The variety of studies on the effects of magnetic storms and extremely low-frequency, periodic variations of the geomagnetic field on human beings and animals as well as on social phenomena are described. The diverse experiments involving artificial laboratory magnetic fields acting on different biological entities under different conditions are also considered. A series of theoretical advances are reviewed that have paved the way for a step-by-step understanding of the mechanisms of magnetic field effects on biological systems. The predominantly unfavorable influence of magnetic fields on living beings is shown, but the cases of favorable influence of magnetic fields on human beings and lower animals are demonstrated as well. The majority of Russian investigations in this area of science has been unknown among the non-Russian speaking audience for many reasons, primarily because of a language barrier. Therefore, it is hoped that this review may be of interest to the international scientific community.  相似文献   

4.
Mechanism for action of electromagnetic fields on cells   总被引:24,自引:0,他引:24  
A biophysical model for the action of oscillating electric fields on cells, presented by us before [Biochem. Biophys. Res. Commun. 272(3) (2000) 634-640], is extended now to include oscillating magnetic fields as well, extended to include the most active biological conditions, and also to explain why pulsed electromagnetic fields can be more active biologically than continuous ones. According to the present theory, the low frequency fields are the most bioactive ones. The basic mechanism is the forced-vibration of all the free ions on the surface of a cell's plasma membrane, caused by an external oscillating field. We have shown that this coherent vibration of electric charge is able to irregularly gate electrosensitive channels on the plasma membrane and thus cause disruption of the cell's electrochemical balance and function [Biochem. Biophys. Res. Commun. 272(3) (2000) 634-640]. It seems that this simple idea can be easily extended now and looks very likely to be able to give a realistic basis for the explanation of a wide range of electromagnetic field bioeffects.  相似文献   

5.
Organisms exposed to a combination of weak, parallel static and alternating magnetic fields show a distinct response when the frequency of the alternating component is formally equal to the cyclotron frequencies for Ca2+ or other biologically important ions. It is impossible to explain the observable phenomenon through a magnetoinduced drift of the ions, as the Lorentz force is too small to change ionic movements. In similar conditions, a resonance-like response arises when the alternating field is tuned to the Larmor frequency for nuclear-spin magnetic moments. The mechanism of these phenomena is also still unclear. In this communication, arguments are presented whereby both types of effect can be treated in a unified context, for which the existence of ion-specific magnetic dipoles must be postulated.  相似文献   

6.
A recent experiment on a physical, nonbiological system of ions at room temperature has proved that microscopic ion currents can be induced by applying simultaneously two parallel magnetic fields, one rather weak static field, (-->)B(0) and one much weaker alternating field, (-->) B(ac),[B(ac) approximately 10(-3) B(0)] whose frequency coincides with the cyclotron frequency v = qB(0)/2pim of the selected ion. As a result, ionic bursts lasting up to 20 s and with amplitude up to 10 nA arise. The much larger exchanges of energy induced by thermal agitation (the "kT-problem") appear to play no role whatsoever. We have analyzed this problem in the framework of coherent quantum electrodynamics, reaching the following conclusions: (a) as has been shown in previous articles, water molecules in the liquid and solute ions are involved in their ground state in coherent ordered configurations; (b) ions are able to move without collisions among themselves in the interstices between water coherence domains; (c) because of coherence, ions can follow classical orbits in the magnetic fields. A full quantitative understanding of the experiments is thus reached.  相似文献   

7.
We show, in elementary terms, using for the most part only elementary mathematics, the physical bases for the ion parametric resonance model so as to clarify the assumptions and consequences of the model. The analysis shows why, contrary to earlier conclusions, no combination of weak DC and AC magnetic fields can modify the transition rate to the ground state of excited ions. Although reinterpretations of the biological consequences of the motion of the excited ions circumvent that particular objection to the model, those changes introduce other difficulties. Also, other objections to the mechanism still stand; hence the model cannot account for any purported biological effects of weak extremely low frequency magnetic fields. Bioelectromagnetics 19:181–191, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The literature on biological effects of magnetic and electromagnetic fields commonly utilized in magnetic resonance imaging systems is surveyed here. After an introduction on the basic principles of magnetic resonance imaging and the electric and magnetic properties of biological tissues, the basic phenomena to understand the bio-effects are described in classical terms. Values of field strengths and frequencies commonly utilized in these diagnostic systems are reported in order to allow the integration of the specific literature on the bio-effects produced by magnetic resonance systems with the vast literature concerning the bio-effects produced by electromagnetic fields. This work gives an overview of the findings about the safety concerns of exposure to static magnetic fields, radio-frequency fields, and time varying magnetic field gradients, focusing primarily on the physics of the interactions between these electromagnetic fields and biological matter. The scientific literature is summarized, integrated, and critically analyzed with the help of authoritative reviews by recognized experts, international safety guidelines are also cited.  相似文献   

9.
There are many experiments showing that weak, non-thermal electric fields influence living tissues. In many cases, biological effects display 'windows' in biologically effective parameters of electric fields: most dramatic is the fact that relatively intense electric fields sometimes do not cause appreciable effect, while smaller fields do. Linear resonant physical processes do not explain frequency windows in this case. Both frequency and amplitude windows are evident from experiments on human dermal fibroblasts in a collagen matrix. For this in vitro model of skin, exposure to extremely low frequency (ELF) electric fields in the frequency range 10-100 Hz and the amplitude range of 0-130 microA/cm(2) macroscopic current density demonstrates such unusual 'window' behavior. Amplitude window phenomena suggest a non-linear physical mechanism. We consider non-linear quantum-interference effects on protein-bound substrate ions: These ions experience, due to electric fields in the media or biological tissue as small as 1 mV/m, electric gradients produced by polarized binding ligand atomic shells. The electric gradients cause an interference of ion quantum states. This ion-interference mechanism predicts specific electric-field frequency and amplitude windows within which fibroblast proliferation occurs.  相似文献   

10.
BACKGROUND: Many microorganisms have the ability to either oxidize molecular hydrogen to generate reducing power or to produce hydrogen in order to remove low-potential electrons. These reactions are catalyzed by two unrelated enzymes: the Ni-Fe hydrogenases and the Fe-only hydrogenases. RESULTS: We report here the structure of the heterodimeric Fe-only hydrogenase from Desulfovibrio desulfuricans - the first for this class of enzymes. With the exception of a ferredoxin-like domain, the structure represents a novel protein fold. The so-called H cluster of the enzyme is composed of a typical [4Fe-4S] cubane bridged to a binuclear active site Fe center containing putative CO and CN ligands and one bridging 1, 3-propanedithiol molecule. The conformation of the subunits can be explained by the evolutionary changes that have transformed monomeric cytoplasmic enzymes into dimeric periplasmic enzymes. Plausible electron- and proton-transfer pathways and a putative channel for the access of hydrogen to the active site have been identified. CONCLUSIONS: The unrelated active sites of Ni-Fe and Fe-only hydrogenases have several common features: coordination of diatomic ligands to an Fe ion; a vacant coordination site on one of the metal ions representing a possible substrate-binding site; a thiolate-bridged binuclear center; and plausible proton- and electron-transfer pathways and substrate channels. The diatomic coordination to Fe ions makes them low spin and favors low redox states, which may be required for catalysis. Complex electron paramagnetic resonance signals typical of Fe-only hydrogenases arise from magnetic interactions between the [4Fe-4S] cluster and the active site binuclear center. The paucity of protein ligands to this center suggests that it was imported from the inorganic world as an already functional unit.  相似文献   

11.
There is substantial evidence indicating that moderate-intensity static magnetic fields (SMF) are capable of influencing a number of biological systems, particularly those whose function is closely linked to the properties of membrane channels. Most of the reported moderate SMF effects may be explained on the basis of alterations in membrane calcium ion flux. The mechanism suggested to explain these effects is based on the diamagnetic anisitropic properties of membrane phospholipids. It is proposed that reorientation of these molecules during moderate SMF exposure will result in the deformation of imbedded ion channels, thereby altering their activation kinetics. Channel inactivation would not be expected to be influenced by these fields because this mechanism is not located within the intramembraneous portion of the channel. Patch-clamp studies of calcium channels have provided support for this hypothesis, as well as demonstrating a temperature dependency that is understandable on the basis of the membrane thermotropic phase transition. Additional studies have demonstrated that sodium channels are similarly affected by SMFs, although to a lesser degree. These findings support the view that moderate SMF effects on biological membranes represent a general phenomenon, with some channels being more susceptible than others to membrane deformation.  相似文献   

12.
Zakharov SD 《Biofizika》2010,55(4):626-630
Organisms exposed to a combination of weak, parallel directed static and alternate magnetic fields show a distinct response when the frequency of the alternate component is formally equal to the cyclotron frequencies for Ca2+ or other biologically important ions. It is impossible to explain the observable phenomenon through a magnetoinduced drift of the ions, as the Lorentz's force is too small to change ionic movements. In similar conditions, a resonance-like response arises when the alternate field is tuned to the Larmor frequency for nuclear-spin magnetic moments. The mechanism of these phenomena is also still unclear. In the report, the arguments are presented to treat both types of effects in a single context for which the existence of ion magnetic dipoles is postulated.  相似文献   

13.
An elementary model consisting of one charged particle in a viscous medium exposed to weak ac-dc low-frequency magnetic fields is analyzed to identify and explain the fundamental characteristics of the physical mechanisms that result in a resonance response, which is similar to the familiar cyclotron resonance. The model predicts both frequency and amplitude windows, which are explained in terms of synchronization of the particle with electric fields. Although extrapolation of model results to biological systems is limited by the elementary nature of the model, the model results indicate that observed resonant responses by others of biological systems to ac-dc magnetic fields are probably not due to resonant response of ions in solution, since the model predicts that no resonant response is possible unless the viscous damping is very low, many orders of magnitude lower than the viscous damping of ions in solution.  相似文献   

14.
Theoretical models proposed to date have been unable to clearly predict biological results from exposure to low-intensity electric and magnetic fields (EMF). Recently a predictive ionic resonance model was proposed by Lednev, based on an earlier atomic spectroscopy theory described by Podgoretskii and Podgoretskii and Khrustalev. The ion parametric resonance (IPR) model developed in this paper corrects mathematical errors in the earlier Lednev model and extends that model to give explicit predictions of biological responses to parallel AC and DC magnetic fields caused by field-induced changes in combinations of ions within the biological system. Distinct response forms predicted by the IPR model depend explicitly on the experimentally controlled variables: magnetic flux densities of the AC and DC magnetic fields (Bac and Bdc, respectively); AC frequency (fac); and, implicitly, charge to mass ratio of target ions. After clarifying the IPR model and extending it to combinations of different resonant ions, this paper proposes a basic set of experiments to test the IPR model directly which do not rely on the choice of a particular specimen or endpoint. While the fundamental bases of the model are supported by a variety of other studies, the IPR model is necessarily heuristic when applied to biological systems, because it is based on the premise that the magnitude and form of magnetic field interactions with unhydrated resonant ions in critical biological structures alter ion-associated biological activities that may in turn be correlated with observable effects in living systems. © 1994 Wiley-Liss, Inc.  相似文献   

15.
We seek to extend the recent suggestion that classical cyclotron resonance of biologically important ions is implicated in weak electromagnetic field-cell interactions. The motion of charged particles in a constant magnetic field and periodic electric field is examined under the simplifying assumption of no damping. Each of the nine terms of the relative dielectric tensor is found to have a dependence on functions that include the factor (omega 2 - omega 2B)-1, where omega B is the gyrofrequency. We also find a plasmalike decomposition of the electric field into oppositely rotating components that could conceivably act to drive oppositely charged ions in the same direction through helical membrane channels. For weak low-frequency magnetic fields, an additional feature arises, namely, periodic reinforcement of the resonance condition with intervals of the order of tens of msec for biological ions such as Li+, Na+, and K+.  相似文献   

16.
Primary-culture bone cells were exposed to ion-resonance (IR) magnetic fields tuned to Ca2+. Cytosolic calcium concentration, [Ca2+]c, was measured by using fura-2 during field exposure. The fields investigated were 20 μT static + 40 μT p-p at either 15.3 or 76.6 Hz, and 0.13 mT static + either 0.5 or 1.0 mT p-p at 100 Hz. Other parameters included field orientation, culture age (2 or 5 days after plating), and the presence of serum (0 or 2%) during exposure. Total experiment time was 29.5 min: The field was applied after 2 min, and bradykinin was added as an agonist control after 22 min. The data were quantified on a single-cell basis during the 2–22 min exposure period in terms of the magnitude of the largest occurring [Ca2+]c spike normalized to local baseline. Field-exposed and control groups were characterized in terms of the percent of cells exhibiting spike magnitudes above thresholds of 100 or 66% over baseline and were compared by using Fisher's exact test. Without serum, there was little evidence that IR magnetic fields altered [Ca2+]c. However, in the presence of 2% serum, 3 of the 16 experiments exhibited significant effects at the 100% threshold. Reducing this threshold to 66% resulted in five experiments exhibiting significant effects. Most strikingly, in all of these cases, the field acted to enhance [Ca2+]c activity as opposed to suppressing [Ca2+]c activity. These findings suggest a role for serum or for constituents within serum in mediating the effects of IR magnetic fields on cells and may provide a resolution pathway to the dilemma imposed by theoretical arguments regarding the possibility of such phenomena. Possible roles of serum and future studies are discussed. Bioelectromagnetics 18:203–214, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
磁场在生活中无处不在,为探究磁场的生物学效应,大量研究工作已经开展。斑马鱼作为新兴的模式生物,在探明磁场与生理功能关系方面具有重要作用。本文梳理了当前磁生物学在斑马鱼上的相关研究。已有研究表明磁场会导致斑马鱼生长畸形、发育延迟和细胞凋亡,影响斑马鱼的游泳行为和方向偏好,也会改变其昼夜节律,还会对生殖和免疫功能产生影响;斑马鱼可能具有不止一种的磁感应机制,除了目前已提出的磁矿石晶体模型、自由基对模型和电磁感应模型等磁感应模型外,磁场引起的DNA损伤、Ca2+稳态异常、微管聚合速率改变、应激反应、生物钟基因cry的表达改变等可部分解释上述现象。针对存在的生物磁感应研究中存在的参数不一和机制不清晰等问题,结合斑马鱼优势,本文提出未来斑马鱼在磁生物学研究中的潜在方向:基于斑马鱼建立磁场和生物参数可控的磁生物学研究模型;非侵入性活体追踪相关生命活动过程,可视化研究磁生物学现象;基于Cry蛋白开展磁场与生物节律关系的研究。  相似文献   

18.
Lednev's (1991) "possible mechanisms for the influence of weak magnetic fields on biological system" involved two parallel magnetic fields, one constant and one oscillatory in the ELF (extremely low-frequency) range. The suggested ion resonances (IPR) were termed "impossible" by Adair (1992, 1997, 1998) even after they were demonstrated in a rat-nerve (PC-12) cell culture by Blackman et al. (1994). The "signal-to-noise-ratio" paradox (introduced by the author) is resolved by taking account of the coherent absorption of the ELF energy and showing how the energy of several trillion ELF photons can free a single ion from its trap on the surface of a cell of the culture.  相似文献   

19.
20.
I show that the interaction of weak DC and ELF magnetic fields with contained ions cannot generate significant biological effects through changing the character of the ion orbits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号