首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The four-helical immunity protein Im7 folds through an on-pathway intermediate that has a specific, but partially misfolded, hydrophobic core. In order to gain further insight into the structure of this species, we have identified the backbone hydrogen bonds formed in the ensemble by measuring the amide exchange rates (under EX2 conditions) of the wild-type protein and a variant, I72V. In this mutant the intermediate is significantly destabilised relative to the unfolded state (deltadeltaG(ui) = 4.4 kJ/mol) but the native state is only slightly destabilised (deltadeltaG(nu) = 1.8 kJ/mol) at 10 degrees C in 2H2O, pH* 7.0 containing 0.4 M Na2SO4, consistent with the view that this residue forms significant non-native stabilising interactions in the intermediate state. Comparison of the hydrogen exchange rates of the two proteins, therefore, enables the state from which hydrogen exchange occurs to be identified. The data show that amides in helices I, II and IV in both proteins exchange slowly with a free energy similar to that associated with global unfolding, suggesting that these helices form highly protected hydrogen-bonded helical structure in the intermediate. By contrast, amides in helix III exchange rapidly in both proteins. Importantly, the rate of exchange of amides in helix III are slowed substantially in the Im7* variant, I72V, compared with the wild-type protein, whilst other amides exchange more rapidly in the mutant protein, in accord with the kinetics of folding/unfolding measured using chevron analysis. These data demonstrate, therefore, that local fluctuations do not dominate the exchange mechanism and confirm that helix III does not form stable secondary structure in the intermediate. By combining these results with previously obtained Phi-values, we show that the on-pathway folding intermediate of Im7 contains extensive, stable hydrogen-bonded structure in helices I, II and IV, and that this structure is stabilised by both native and non-native interactions involving amino acid side-chains in these helices.  相似文献   

2.
The kinetic intermediate of RNase H is structured in a core region of the protein. To probe the role of this intermediate in the folding of RNase H, the folding kinetics of mutant proteins with altered native state stabilities were investigated. Mutations within the folding core destabilize the kinetic intermediate and slow refolding in a manner consistent with an obligatory intermediate model. Mutations outside of the folding core, however, do not affect the stability of the kinetic intermediate but do perturb the native state and transition state. These results indicate that interactions formed in the intermediate persist in the transition and native states and that RNase H folds through a hierarchical mechanism.  相似文献   

3.
We examined the co-operativity of ultra-fast folding of a protein and whether the Phi-value analysis of its transition state depended on the location of the optical probe. We incorporated in turn a tryptophan residue into each of the three helices of the B domain of Protein A. Each Trp mutant of the three-helix bundle protein was used as a pseudo-wild-type parent for Phi-analysis in which the intrinsic Trp fluorescence probed the formation of each helix during the transition state. Apart from local effects in the immediate vicinity of the probe, the three separate sets of Phi-values were in excellent agreement, demonstrating the overall co-operativity of folding and the robustness of the Phi-analysis. The transition state of folding of Protein A contains the second helix being well formed with many stabilizing tertiary hydrophobic interactions. In contrast, the first and the third helices are more poorly structured in the transition state. The mechanism of folding thus involves the concurrent formation of secondary and tertiary interactions, and is towards the nucleation-condensation extreme in the nucleation-condensation-framework continuum of mechanism, with helix 2 being the nucleus. We provide an error analysis of Phi-values derived purely from the kinetics of two-state chevron plots.  相似文献   

4.
Comparison of the folding processes for homologue proteins can provide valuable information about details in the interactions leading to the formation of the folding transition state. Here the folding kinetics of 18 variants of yACBP and 3 variants of bACBP have been studied by Phi-value analysis. In combination with Phi-values from previous work, detailed insight into the transition states for folding of both yACBP and bACBP has been obtained. Of the 16 sequence positions that have been studied in both yACBP and bACBP, 5 (V12, I/L27, Y73, V77, and L80) have high Phi-values and appear to be important for the transition state formation in both homologues. Y31, A34, and A69 have high Phi-values only in yACBP, while F5, A9, and I74 have high Phi-values only in bACBP. Thus, additional interactions between helices A2 and A4 appear to be important for the transition state of yACBP, whereas additional interactions between helices A1 and A4 appear to be important for the transition state of bACBP. To examine whether these differences could be assigned to different packing of the residues in the native state, a solution structure of yACBP was determined by NMR. Small changes in the packing of the hydrophobic side-chains, which strengthen the interactions between helices A2 and A4, are observed in yACBP relative to bACBP. It is suggested that different structure elements serve as scaffolds for the folding of the 2 ACBP homologues.  相似文献   

5.
The four-helical protein Im7 folds via a rapidly formed on-pathway intermediate (k(UI)=3000 s(-1) at pH 7.0, 10 degrees C) that contains three (helices I, II and IV) of the four native alpha-helices. The relatively slow (k(IN)=300 s(-1)) conversion of this intermediate into the native structure is driven by the folding and docking of the six residue helix III onto the developing hydrophobic core. Here, we describe the structural properties of four Im7* variants designed to trap the protein in the intermediate state by disrupting the stabilising interactions formed between helix III and the rest of the protein structure. In two of these variants (I54A and L53AI54A), hydrophobic residues within helix III have been mutated to alanine, whilst in the other two mutants the sequence encompassing the native helix III was replaced by a glycine linker, three (H3G3) or six (H3G6) residues in length. All four variants were shown to be monomeric, as judged by analytical ultracentrifugation, and highly helical as measured by far-UV CD. In addition, all the variants denature co-operatively and have a stability (DeltaG(UF)) and buried hydrophobic surface area (M(UF)) similar to those of the on-pathway kinetic intermediate. Structural characterisation of these variants using 1-anilino-8-napthalene sulphonic acid (ANS) binding, near-UV CD and 1D (1)H NMR demonstrate further that the trapped intermediate ensemble is highly structured with little exposed hydrophobic surface area. Interestingly, however, the structural properties of the variants I54A and L53AI54A differ in detail from those of H3G3 and H3G6. In particular, the single tryptophan residue, located near the end of helix IV, and distant from helix III, is in a distinct environment in the two sets of mutants as judged by fluorescence, near-UV CD and the sensitivity of tryptophan fluorescence to iodide quenching. Overall, the results confirm previous kinetic analysis that demonstrated the hierarchical folding of Im7 via an on-pathway intermediate, and show that this species is a highly helical ensemble with a well-formed hydrophobic core. By contrast with the native state, however, the intermediate ensemble is flexible enough to change in response to mutation, its structural properties being tailored by residues in the sequence encompassing the native helix III.  相似文献   

6.
The folding pathway of Rd-apocytochrome b562, a four-helix bundle protein, was characterized using Trp and Ala/Gly pair mutations. We found that the Trp mutants (F65W) of both the fully folded Rd-apocytochrome b562 and a partially unfolded intermediate with the N-terminal helix (helix I) unfolded, fold with identical folding rates, providing direct evidence for the conclusion that the rate-limiting transition state folds before the partially unfolded intermediate; and that this hidden intermediate is an on-pathway intermediate. We further characterized the helical structures formed in the rate-limiting transition state by measuring the folding/unfolding rates for Ala/Gly pair mutations at solvent-exposed positions. Little change in folding rates occurred for the Ala/Gly pair mutations at positions in helix I and the C-terminal regions of helix II and IV. In contrast, a significant difference in folding rates was observed for the Ala/Gly pair mutations in helix III and the N-terminal regions of helix II and IV, suggesting that helix III and the N-terminal regions of helix II and IV are formed in the rate-limiting transition state. These results complement those obtained from earlier studies and help to define the folding pathway of Rd-apocytochrome b562 in more detail.  相似文献   

7.
The transition state for folding of chymotrypsin inhibitor 2 (CI2) is investigated by correlating Phi-values with inter-residue contacts. In agreement with former work, the strongest consolidation of secondary structure is found in the alpha-helix. There are correlations for tertiary structure interactions between the residues Leu49, Ile57 and the helix which have been suggested to represent the main components of the nucleation site of CI2 folding. However, correlations for tertiary structure interactions of comparable magnitude are also found in the helix-strand2-strand1-motif and between strand3and strand4. Copyright 1999 Academic Press.  相似文献   

8.
Many proteins populate collapsed intermediate states during folding. In order to elucidate the nature and importance of these species, we have mapped the structure of the on-pathway intermediate of the four-helix protein, Im7, together with the conformational changes it undergoes as it folds to the native state. Kinetic data for 29 Im7 point mutants show that the intermediate contains three of the four helices found in the native structure, packed around a specific hydrophobic core. However, the intermediate contains many non-native interactions; as a result, hydrophobic interactions become disrupted in the rate-limiting transition state before the final helix docks onto the developing structure. The results of this study support a hierarchical mechanism of protein folding and explain why the misfolding of Im7 occurs. The data also demonstrate that non-native interactions can play a significant role in folding, even for small proteins with simple topologies.  相似文献   

9.
Site-directed mutagenesis has been used to probe the interactions that stabilize the equilibrium and burst phase kinetic intermediates formed by apomyoglobin. Nine bulky hydrophobic residues in the A, E, G and H helices were replaced by alanine, and the effects on protein stability and kinetic folding pathways were determined. Hydrogen exchange pulse-labeling experiments, with NMR detection, were performed for all mutants. All of the alanine substitutions resulted in changes in proton occupancy or an increased rate of hydrogen-deuterium exchange for amides in the immediate vicinity of the mutation. In addition, most mutations affected residues in distant parts of the amino acid sequence, providing insights into the topology of the burst phase intermediate and the interactions that stabilize its structure. Differences between the pH 4 equilibrium molten globule and the kinetic intermediate are evident: the E helix region plays no discernible role in the equilibrium intermediate, but contributes significantly to stabilization of the ensemble of compact intermediates formed during kinetic refolding. Mutations that interfere with docking of the E helix onto the preformed A/B/G/H helix core substantially decrease the folding rate, indicating that docking and folding of the E helix region occurs prior to formation of the apomyoglobin folding transition state. The results of the mutagenesis experiments are consistent with rapid formation of an ensemble of compact burst phase intermediates with an overall native-like topological arrangement of the A, B, E, G, and H helices. However, the experiments also point to disorder in docking of the E helix and to non-native contacts in the kinetic intermediate. In particular, there is evidence for translocation of the H helix by approximately one helical turn towards its N terminus to maximize hydrophobic interactions with helix G. Thus, the burst phase intermediate observed during kinetic refolding of apomyoglobin consists of an ensemble of compact, kinetically trapped states in which the helix docking appears to be topologically correct, but in which there are local non-native interactions that must be resolved before the protein can fold to the native structure.  相似文献   

10.
Apoflavodoxin from Anabaena PCC 7119 is a 169 residue globular protein of known structure and energetics. Here, we present a comprehensive Phi-value analysis to characterize the structure of its transition state. A total of 34 non-disruptive mutations are made throughout the structure and a range of Phi-values from zero to one are observed. In addition, a small set of eight aliphatic small-to-large mutations have been introduced in the hydrophobic core of the protein and they have been analyzed to investigate the feasibility of stabilizing the unfolding transition state by creating new non-native interactions. We find that the transition state of apoflavodoxin (so far the largest protein subjected to Phi-analysis) is diffuse and that it can be stabilized by unspecific hydrophobic interactions that can speed up the folding reaction. The data gathered on the apoflavodoxin transition state are compared with results from experimental studies in other proteins to revisit the relationship between the native state topology and transition state structure.  相似文献   

11.
The small (87-residue) α-helical protein Im7 (an inhibitor protein for colicin E7 that provides immunity to cells producing colicin E7) folds via a three-state mechanism involving an on-pathway intermediate. This kinetic intermediate contains three of four native helices that are oriented in a non-native manner so as to minimise exposed hydrophobic surface area at this point in folding. The short (6-residue) helix III has been shown to be unstructured in the intermediate ensemble and does not dock onto the developing hydrophobic core until after the rate-limiting transition state has been traversed. After helix III has docked, it adopts an α-helical secondary structure, and the side chains of residues within this region provide contacts that are crucial to native-state stability. In order to probe further the role of helix III in the folding mechanism of Im7, we created a variant that contains an eight-amino-acid polyalanine-like helix stabilised by a Glu-Arg salt bridge and an Asn-Pro-Gly capping motif, juxtaposed C-terminal to the natural 6-residue helix III. The effect of this insertion on the structure of the native protein and its folding mechanism were studied using NMR and ?-value analysis, respectively. The results reveal a robust native structure that is not perturbed by the presence of the extended helix III. Mutational analysis performed to probe the folding mechanism of the redesigned protein revealed a conserved mechanism involving the canonical three-helical intermediate. The results suggest that folding via a three-helical species stabilised by both native and non-native interactions is an essential feature of Im7 folding, independent of the helical propensity of helix III.  相似文献   

12.
Im7 folds via an on‐pathway intermediate that contains three of the four native α‐helices. The missing helix, helix III, is the shortest and its failure to be formed until late in the pathway is related to frustration in the structure. Im7H3M3, a 94‐residue variant of the 87‐residue Im7 in which helix III is the longest of the four native helices, also folds via an intermediate. To investigate the structural basis for this we calculated the frustration in the structure of Im7H3M3 and used NMR to investigate its dynamics. We found that the native state of Im7H3M3 is highly frustrated and in equilibrium with an intermediate state that lacks helix III, similar to Im7. Model‐free analysis identified residues with chemical exchange contributions to their relaxation that aligned with the residues predicted to have highly frustrated interactions, also like Im7. Finally, we determined properties of urea‐denatured Im7H3M3 and identified four clusters of interacting residues that corresponded to the α‐helices of the native protein. In Im7 the cluster sizes were related to the lengths of the α‐helices with cluster III being the smallest but in Im7H3M3 cluster III was also the smallest, despite this region forming the longest helix in the native state. These results suggest that the conformational properties of the urea‐denatured states promote formation of a three‐helix intermediate in which the residues that form helix III remain non‐helical. Thus it appears that features of the native structure are formed early in folding linked to collapse of the unfolded state.  相似文献   

13.
The folding of WW domains is rate limited by formation of a beta-hairpin comprising residues from strands 1 and 2. Residues in the turn of this hairpin have reported Phi-values for folding close to 1 and have been proposed to nucleate folding. High Phi-values do not necessarily imply that the energetics of formation are a driving force for initiating folding. We demonstrate by NMR studies and molecular dynamics simulations that the first turn of the hYAP, FBP28, and PIN1 WW domains is structurally dynamic and solvent exposed in the native and folding transition states. It is, therefore, unlikely that the formation of the beta-turn per se provides the energetic driving force for hairpin folding. It is more likely that the turn acts as an easily formed hinge that facilitates the formation of the hairpin; it is a nucleus as defined by the nucleation-condensation mechanism whereby a diffuse nucleus is stabilized by associated interactions.  相似文献   

14.
TI I27, a beta-sandwich domain from the human muscle protein titin, has been shown to fold via two alternative pathways, which correspond to a change in the folding mechanism. Under physiological conditions, TI I27 folds by a classical nucleation-condensation mechanism (diffuse transition state), whereas at extreme conditions of temperature and denaturant it switches to having a polarized transition state. We have used experimental Phi-values as restraints in ensemble-averaged molecular dynamics simulations to determine the ensembles of structures representing the two transition states. The comparison of these ensembles indicates that when native interactions are substantially weakened, a protein may still be able to fold if it can access an alternative transition state characterized by a much larger entropic contribution. Analysis of the probability distribution of Phi-values derived from ensemble averaged simulations, enables us to identify residues that form contacts in some members of the ensemble but not in others illustrating that many interactions present in transition states are not strictly required for the successful completion of the folding process.  相似文献   

15.
It is challenging to experimentally define an energy landscape for protein folding that comprises multiple partially unfolded states. Experimental results are often ambiguous as to whether a non-native state is conformationally homogeneous. Here, we tested an approach combining systematic mutagenesis and a Br?nsted-like analysis to reveal and quantify conformational heterogeneity of folding intermediate states. Using this method, we resolved an otherwise apparently homogeneous equilibrium folding intermediate of Borrelia burgdorferi OspA into two conformationally distinct species and determined their relative populations. Furthermore, we mapped the structural differences between these intermediate species, which are consistent with the non-native species that we previously proposed based on native-state hydrogen exchange studies. When treated as a single state, the intermediate ensemble exhibited fractional Phi-values for mutations and Hammond-type behaviors that are often observed for folding transition states. We found that a change in relative population of the two species within the intermediate ensemble explains these properties well, suggesting that fractional Phi-values and Hammond-type behaviors exhibited by folding intermediates and transition states may arise more often from conformational heterogeneity than from a single partial structure. Our results are consistent with the presence of multiple minima in a rugged energy landscape predicted from theoretical studies. The method described here provides a promising means to probe a complex folding energy landscape.  相似文献   

16.
To investigate whether the structure partially formed in the molten globule folding intermediate of goat alpha-lactalbumin is further organized in the transition state of folding, we constructed a number of mutant proteins and performed Phi-value analysis on them. For this purpose, we measured the equilibrium unfolding transitions and kinetic refolding and unfolding reactions of the mutants using equilibrium and stopped-flow kinetic circular dichroism techniques. The results show that the mutants with mutations located in the A-helix (V8A, L12A), the B-helix (V27A), the beta-domain (L52A, W60A), the C-helix (K93A, L96A), the C-D loop (Y103F), the D-helix (L105A, L110A), and the C-terminal 3(10)-helix (W118F), have low Phi-values, less than 0.2. On the other hand, D87N, which is located on the Ca(2+)-binding site, has a high Phi-value, 0.91, indicating that tight packing of the side-chain around Asp87 occurs in the transition state. One beta-domain mutant (I55V) and three C-helix mutants (I89V, V90A, and I95V) demonstrated intermediate Phi-values, between 0.4 and 0.7. These results indicate that the folding nucleus in the transition state of goat alpha-LA is not extensively distributed over the alpha-domain of the protein, but very localized in a region that contains the Ca(2+)-binding site and the interface between the C-helix and the beta-domain. This is apparently in contrast with the fact that the molten globule state of alpha-lactalbumin has a partially formed structure inside the alpha-domain. It is concluded that the specific docking of the alpha and beta-domains at a domain interface is necessary for this protein to organize its native structure from the molten globule intermediate.  相似文献   

17.
Kinetic and equilibrium studies of apomyoglobin folding pathways and intermediates have provided important insights into the mechanism of protein folding. To investigate the role of intrinsic helical propensities in the apomyoglobin folding process, a mutant has been prepared in which Asn132 and Glu136 have been substituted with glycine to destabilize the H helix. The structure and dynamics of the equilibrium molten globule state formed at pH 4.1 have been examined using NMR spectroscopy. Deviations of backbone (13)C(alpha) and (13)CO chemical shifts from random coil values reveal high populations of helical structure in the A and G helix regions and in part of the B helix. However, the H helix is significantly destabilized compared to the wild-type molten globule. Heteronuclear [(1)H]-(15)N NOEs show that, although the polypeptide backbone in the H helix region is more flexible than in the wild-type protein, its motions are restricted by transient hydrophobic interactions with the molten globule core. Quench flow hydrogen exchange measurements reveal stable helical structure in the A and G helices and part of the B helix in the burst phase kinetic intermediate and confirm that the H helix is largely unstructured. Stabilization of structure in the H helix occurs during the slow folding phases, in synchrony with the C and E helices and the CD region. The kinetic and equilibrium molten globule intermediates formed by N132G/E136G are similar in structure. Although both the wild-type apomyoglobin and the mutant fold via compact helical intermediates, the structures of the intermediates and consequently the detailed folding pathways differ. Apomyoglobin is therefore capable of compensating for mutations by using alternative folding pathways within a common basic framework. Tertiary hydrophobic interactions appear to play an important role in the formation and stabilization of secondary structure in the H helix of the N132G/E136G mutant. These studies provide important insights into the interplay between secondary and tertiary structure formation in protein folding.  相似文献   

18.
Escherichia coli RNase H folds through a partially folded kinetic intermediate that mirrors a rarely populated, partially unfolded form detectable by native-state hydrogen exchange under equilibrium conditions. Residue 53 is at the interface of two helices known to be structured in this intermediate. Kinetic refolding studies on mutant proteins varying in size and hydrophobicity at residue 53 support a contribution of hydrophobicity to the stabilities of the kinetic intermediate and the transition state. Packing interactions also play a significant role in the stability of these two states, though they play a much larger role in the native-state stability. One dramatic mutation, I53D, results in the conversion from a three-state to a two-state folding mechanism, which is explained most easily through a simple destabilization of the kinetic intermediate such that it is no longer stable with respect to the unfolded state. These results demonstrate that interactions that stabilize an intermediate can accelerate folding if these same interactions are present in the transition state. Our results are consistent with a hierarchical model of folding, where the intermediate consists of native-like interactions, is on-pathway, and is productive for folding.  相似文献   

19.
The B domain of protein A (BdpA) is a popular paradigm for simulating protein folding pathways. The discrepancies between so many simulations and subsequent experimental testing may be attributable to the protein being highly symmetrical: changing experimental conditions could perturb the subtle interplay between the effects of symmetry in the native structure and the effects of asymmetry from specific interactions in a given sequence. If the protein folds via multiple pathways, perturbations, such as temperature, denaturant concentration, and mutation, should change the flux of micro pathways, leading to changes in the bulk properties of the transition state. We tested this hypothesis by conducting a Phi-analysis of BdpA as a function of temperature from 25.0 degrees C to 60.0 degrees C. The Phi-values had no significant dependence on temperature and the values at 55.0 degrees C (denaturing conditions) are very similar to those at 25.0 degrees C (folding conditions), indicating the structure of the transition state does not significantly change although the experimental conditions are considerably altered. The results suggest that BdpA folds via a single dominant folding pathway.  相似文献   

20.
Studies on members of protein families with similar structures but divergent sequences provide insights into the effects of sequence composition on the mechanism of folding. Members of the peripheral subunit-binding domain (PSBD) family fold ultrafast and approach the smallest size for cooperatively folding proteins. Φ-Value analysis of the PSBDs E3BD and POB reveals folding via nucleation-condensation through structurally very similar, polarized transition states. Here, we present a Φ-value analysis of the family member BBL and found that it also folds by a nucleation-condensation mechanism. The mean Φ values of BBL, E3BD, and POB were near identical, indicating similar fractions of non-covalent interactions being formed in the transition state. Despite the overall conservation of folding mechanism in this protein family, however, the pattern of Φ values determined for BBL revealed a larger dispersion of the folding nucleus across the entire structure, and the transition state was less polarized. The observed plasticity of transition-state structure can be rationalized by the different helix-forming propensities of PSBD sequences. The very strong helix propensity in the first helix of BBL, relative to E3BD and POB, appears to recruit more structure formation in that helix in the transition state at the expense of weaker interactions in the second helix. Differences in sequence composition can modulate transition-state structure of even the smallest natural protein domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号