首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel analytical procedure was developed for the determination of the fluoroquinolone ofloxacin in chicken kidney, liver, muscle and fat plus skin tissues. The procedure involved a preliminary extraction with 0.15 M HCl followed by solid-phase extraction clean-up. The purification step was performed using a polymeric sorbent coated cartridge. Ofloxacin was analyzed by reversed-phase HPLC using UV detection at 295 nm. The mobile phase used was water–acetonitrile–triethylamine (83:14:0.45, v/v, pH 2.30). The use of triethylamine and the acidic pH modulated the retention of ofloxacin and avoided chemical tailing. The amine modifier and acetonitrile content of the mobile phase were optimized to provide the best selectivity. A flow-rate of 1 ml/min was used and ofloxacin eluted at 5.1 min. HPLC analysis of the tissue samples was performed in 12 min. The procedure was validated according to the International Conference on Harmonisation guidelines across the concentration ranges (100 μg/kg–1.7 mg/kg for kidney and liver tissues and 50 μg/kg–1.0 mg/kg for muscle and fat plus skin tissues). The linearity, the intra- and inter-day accuracies and precisions were determined. The limits of quantification were 50 μg/kg for muscle and fat plus skin tissues and 100 μg/kg for liver and kidney tissues. The procedure was specific and the accuracy values were lower than 20% at the limit of quantitation of spiked samples. The recovery values ranged from 80 to 100%. The limits of detection were established at 60 μg/kg for liver and kidney tissues and at 25 μg/kg for muscle and fat plus skin tissues. Finally, ofloxacin was found to be stable in acidic conditions. The developed procedure is simple, sensitive, accurate and adapted to routine sample analyses such as those carried out for residue depletion studies.  相似文献   

2.
A high-performance liquid chromatographic (HPLC) method based on solid-phase extraction (SPE) was developed for determination of amoxicillin, penicillin G (benzylpenicillin), ampicillin, oxacillin, cloxacillin, nafcillin and dicloxacillin in muscle, liver and kidney tissues of pigs and cattle. The compounds were extracted in aqueous solution by precipitation of organic materials with a mixture of sulphuric acid and sodium tungstate. The extract was cleaned up by SPE on a divinylbenzene-co-N-vinylpyrrolidone polymeric sorbent. Further clean-up was performed by liquid–liquid partition with diethyl ether. The extract was derivatised with benzoic anhydride and 1,2,4-triazole mercury (II) reagent. Chromatography was performed by reversed-phase gradient HPLC on a C18 column with ultraviolet detection at 323 nm. The limits of detection estimated by a conservative model were in the range 8.9–11.1 μg/kg for amoxicillin, penicillin G, ampicillin, oxacillin, cloxacillin and nafcillin and 18.3–20.9 μg/kg for dicloxacillin. The mean recovery range was 66–77% for amoxicillin, 73–75% for penicillin G, 81–82% for ampicillin, 73–76% for oxacillin, 74–75% for cloxacillin, 66–72% for nafcillin and 58–65% for dicloxacillin.  相似文献   

3.
A new and efficient procedure for the clean-up of tetracycline residues in animal tissues and egg prior to reversed-phase high-performance liquid chromatography is described. The principal steps involve homogenization of the tissues in sodium succinate buffer and methanol, followed by centrifugation and clean-up with metal chelate affinity chromatography (MCAC). After further concentration on an Empore extraction membrane with cation-exchange properties, the sample is analysed by HPLC with fluorescence detection. The method was tested on porcine kidney and muscle, bovine liver and whole chicken's egg. The recoveries were determined from spiked tissues for oxytetracycline, tetracycline, chlortetracycline and doxycycline and ranged from 40 to 70%, with repeatabilities below 10% R.S.D.. The analytical responses were linear in the range up to at least 1000 ng/g. The detection limits of the method were estimated at 0.42 ng/g of oxytetracycline, 0.49 ng/g of tetracycline, 0.66 ng/g of chlortetracycline and 1.38 ng/g of doxycycline in porcine muscle, using signal-to-noise ratios of 4:1. Similar detection limits were estimated for kidney, liver and egg. The measured limits of quantification were 2 ng/g for oxytetracycline, 3 ng/g for tetracycline, 4 ng/g for chlortetracycline and 5 ng/g for doxycycline in porcine kidney. The advantage of this method over existing methods is its increased limit of detection.  相似文献   

4.
An isocratic high-performance liquid chromatographic method with ultraviolet detection was utilized for the investigation of the pharmacokinetics of naringenin and its glucuronide conjugate in rat plasma and brain tissue. Plasma and brain tissue were deproteinized by acetonitrile, then centrifuged for sample clean-up. The drugs were separated by a reversed-phase C18 column with a mobile phase consisting of acetonitrile–orthophosphoric acid solution (pH 2.5–2.8) (36:64, v/v). The detection limits of naringenin in rat plasma and brain tissue were 50 ng/ml and 0.4 μg/g, respectively. The glucuronide conjugate of naringenin was evaluated by the deconjugated enzyme β-glucuronidase. The naringenin conjugation ratios in rat plasma and brain tissue were 0.86 and 0.22, respectively, 10 min after naringenin (20 mg/kg, i.v.) administration. The mean naringenin conjugation ratio in plasma was approximately four fold that in brain tissue.  相似文献   

5.
This work presents the development and the validation of an LC–MS–MS method with atmospheric pressure chemical ionization for the quantitative determination of levamisole, an anthelmintic for veterinary use, in porcine tissue samples. A liquid–liquid back extraction procedure using hexane–isoamylalcohol (95:5, v/v) as extraction solvent was followed by a solid-phase extraction procedure using an SCX column to clean up the tissue samples. Methyllevamisole was used as the internal standard. Chromatographic separation was achieved on a LiChrospher® 60 RP-select B (5 μm) column using a mixture of 0.1 M ammonium acetate in water and acetonitrile as the mobile phase. The mass spectrometer was operated in MS–MS full scanning mode. The method was validated for the analysis of various porcine tissues: muscle, kidney, liver, fat and skin plus fat, according to the requirements defined by the European Community. Calibration graphs were prepared for all tissues and good linearity was achieved over the concentration ranges tested (r>0.99 and goodness of fit <10%). Limits of quantification of 5.0 ng/g were obtained for the analysis of levamisole in muscle, kidney, fat and skin plus fat tissues, and of 50.0 ng/g for liver analysis, which correspond in all cases to half the MRLs (maximum residue limits). Limits of detection ranged between 2 and 4 ng/g tissue. The within-day and between-day precisions (RSD, %) and the results for accuracy fell within the ranges specified. The method has been successfully used for the quantitative determination of levamisole in tissue samples from pigs medicated via drinking water. Moreover the product ion spectra of the levamisole peak in spiked and incurred tissue samples were in close agreement (based on ion ratio measurements) with those of standard solutions, indicating the worthiness of the described method for pure qualitative purposes.  相似文献   

6.
A simple and rapid method is described for the GC–MS determination of 4-nonylphenols (NOs) and 4-tert-octylphenol (OC) in biological samples. The NOs and OC in the sample are extracted with acetonitrile and the lipid in the sample extract is eliminated by partitioning between hexane and acetonitrile. After Florisil PR column clean-up, the sample extract is analyzed by GC–MS in the selected ion monitoring (SIM) mode. Average recoveries in pale chub (fish) and corbicula (shellfish) are 86.0 and 93.4% for NOs, and 95.8 and 96.4% for OC, respectively, spiked at the levels of 1.0 μg of NOs and 0.1 μg of OC per 5 g of fish and shellfish samples. The detection limits are 20 ng/g for NOs and 2 ng/g for OC.  相似文献   

7.
High-performance liquid chromatography with electrospray mass spectrometry (LC–MS) was used for analysis of the drug flecainide in serum. The clean-up was performed by solid-phase extraction, and an aromatic ring positional isomer was used as internal standard. Results from method validation on spiked serum samples showed excellent reproducibility; intra- and inter-assay variations (C.V.% and %Bias) were less than 6% within the therapeutic concentration range of the drug (0.2–1.0 μg/ml). Linearity was demonstrated from 0.05 to 2.0 μg/ml. The limit of detection and quantification was 0.025 and 0.05 μg/ml, respectively. Due to the high selectivity of the mass spectrometric detection, no interferences were observed. Results from clinical samples (n=18) from patients in treatment with Tambocor (flecainide acetate) showed excellent correlation with parallel data obtained from a method based on high-performance liquid chromatography (HPLC) with fluorescence detection after liquid/liquid extraction. The chromatographic separation of flecainide and internal standard was improved compared to earlier HPLC methods. The methodology is simple, accurate and requires only 0.25 ml of sample. It is a well suited method for routine therapeutic drug monitoring in a hospital or clinical chemistry laboratory.  相似文献   

8.
Liver and muscle tissue residues of doxycycline in turkeys were determined following administration of 25 mg doxycycline·HCl/kg BW in the drinking water under field conditions. Quantitation was performed using a validated HPLC method with fluorescence detection. The method was able to separate doxycycline and its 4-epimer, 4-epidoxycycline. This epimer was found in both liver and muscle tissue. The detection limits of the method were estimated at 1.2 ng/g and 1.0 ng/g of doxycycline in liver and muscle tissue, respectively, using a signal-to-noise ratio of 3:1. The recovery of doxycycline was determined from spiked tissues and was 63±3.8% and 66±3.1% for liver and muscle, respectively (n=6). Within-day and between-day imprecision, expressed as the R.S.D. was below 7.4%. Linear calibration curves (r>0.997) were obtained in spiked liver between 0 and 1500 ng/g and in spiked muscle between 0 and 500 ng/g. A good stability of doxycycline was observed in liver samples after storage for 22 days at −20°C. The correlation between the residues in the liver and the muscle was expressed as the correlation coefficient r and was 0.9884. The depletion kinetics of doxycycline fitted a one-compartment model. The elimination half-life (T1/2) of doxycycline was 77.7 h and 78.0 h in muscle and liver, respectively. Furthermore, the residue depletion kinetics were used to establish a withdrawal period in conformity with official guidelines. The withdrawal times necessary to reach concentrations below maximum residue limits (MRLs), as imposed by the EU, were 12 days and 17 days for liver and muscle tissue, respectively.  相似文献   

9.
We applied micellar electrokinetic capillary chromatography to simultaneous separation and determination of nitrazepam and its major metabolites, 7-aminonitrazepam and 7-acetamidonitrazepam, in spiked urine. Prior to electrophoresis, the three compounds were successfully extracted from the spiked urine with commercial disposable solid-phase cartridges. The optimum running buffer for the separation was prepared by combining 85 parts of 60 mM sodium dodecyl sulphate—6 mM phosphate—borate, adjusted to pH 8.5, with 15 parts of methanol. The separation order, completed within 25 min, was 7-aminonitrazepam > 7-acetamidonitrazepam > nitrazepam, at an applied potential of 20 kV. We obtained reproducible electropherograms in successive repetitions, and few other peaks or interferences appeared in the electropherogram. The detection limits of the three compounds were 50–100 pg (0.1–0.2 μg/ml of analyte in spiked urine), and the recoveries were 78.9–100.8% for 1 μg/ml and 84.1–100.3% for 5 μg/ml. The application of this method to forensic or clinical samples is demonstrated.  相似文献   

10.
Zilpaterol is an adrenergic drug currently licensed in Mexico and South Africa as a feed additive for cattle close to consignment. In this study an analytical method to detect zilpaterol in commercial feeds was set up. The influence of extraction solvent and matrix was evaluated. The drug as a trimethylsilyl derivative was characterized by GC-MS, on a quadrupole detector, in the electron impact mode. Acidic extraction, solid-phase extraction C(18) non-endcapped clean-up and mass characterization on ions m/z 308, 291, 405, 390 provided zilpaterol recoveries >75.3% and repeatability <3.3% in feeds spiked in the range 30.0-120.0 ng/g. The limits of detection and quantification were 7.5 and 25.0 ng/g, respectively. Such limits are well below the dose of 5.0-20.0 microgram/g proposed as effective.  相似文献   

11.
A solid-phase extraction (SPE) method for sample clean-up followed by a reversed-phase HPLC procedure for the assay of alinastina (pINN) in biological fluids is reported. The effects of the sample pH, composition of the washing and elution solvents and the nature of the SPE cartridge on recovery were evaluated. The selectivity of SPE was examined using spiked rat urine and plasma samples and the CH and PH cartridges gave rise to the cleanest extracts. The recoveries obtained in spiked rat urine and plasma samples were 91.2±2.7 and 99.9±2.8%, respectively. The proposed SPE method coupled off-line with a reserved-phase HPLC system with fluorimetric detection was applied to the quantitation of alinastine in real rat urine samples. The analytical method was also applied and validated for the determination of alinastine in dog plasma. The recovery from spiked dog plasma samples using the PH cartridge was around 65%. The within-day and between-day precisions were 7 and 12%, respectively. The detection and quantitation limits in dog plasma were 0.024 and 0.078 μg/ml, respectively.  相似文献   

12.
This study investigated the feasibility of applying solid-phase microextraction (SPME) combined with gas chromatography–mass spectrometry to analyze chlorophenols in urine. The SPME experimental procedures to extract chlorophenols in urine were optimized with a polar polyacrylate coated fiber at pH 1, extraction time for 50 min and desorption in GC injector at 290°C for 2 min. The linearity was obtained with a precision below 10% R.S.D. for the studied chlorophenols in a wide range from 0.1 to 100 μg/l. In addition, sample extraction by SPME was used to estimate the detection limits of chlorophenols in urine, with selected ion monitoring of GC–MS operated in the electron impact mode and negative chemical ionization mode. Detection limits were obtained at the low ng/l levels. The application of the methods to the determination of chlorophenols in real samples was tested by analyzing urine samples of sawmill workers. The chlorophenols were found in workers, the urinary concentration ranging from 0.02 μg/l (PCP) to 1.56 μg/l (2,4-DCP) depending on chlorophenols. The results show that trace chlorophenols have been detected with SPME–GC–MS in the workers of sawmill where chlorophenol-containing anti-stain agents had been previously used.  相似文献   

13.
A simple and selective procedure for the determination of vinorelbine, a new semi-synthetic vinca alkaloid, is presented. The method is based on ion-exchange high-performance liquid chromatography on normal-phase silica with fluorescence detection, combined with liquid—liquid extraction using diethyl ether for sample clean-up. The absence of endogenous interferences and the excellent chromatographic behaviour of vinca alkaloids provides accurate results even at low concentrations. The limit of determination in plasma is 1.5 μg/l (500-μl sample). Reproducible recoveries in urine were obtained if 10–50 μl of sample were processed supplemented with 500 μl of blank plasma.  相似文献   

14.
A gas chromatography–mass spectrometry method (SIM mode) was developed for the determination of perfluorodecalin (cis and trans isomers, 50% each) (FDC), and perfluoromethylcyclohexylpiperidine (3 isomers) (FMCP) in rat blood. The chromatographic separation was performed by injection in the split mode using a CP-select 624 CB capillary column. Analysis was performed by electronic impact ionization. The ions m/z 293 and m/z 181 were selected to quantify FDC and FMCP due to their abundance and to their specificity, respectively. The ion m/z 295 was selected to monitor internal standard. Before extraction, blood samples were stored at −30°C for at least 24 h in order to break the emulsion. The sample preparation procedure involved sample clean-up by liquid–liquid extraction. The bis(F-butyl)ethene was used as the internal standard. For each perfluorochemical compound multiple peaks were observed. The observed retention times were 1.78 and 1.87 min for FDC, and 2.28, 2.34, 2.48 and 2.56 min for FMCP. For each compound, two calibration curves were used; assays showed good linearity in the range 0.0195–0.78 and 0.78–7.8 mg/ml for FDC, and 0.00975–0.39 and 0.39–3.9 mg/ml for FMCP. Recoveries were 90 and 82% for the two compounds, respectively with a coefficient of variation <8%. Precision ranged from 0.07 to 15.6%, and accuracy was between 89.5 and 111.4%. The limits of quantification were 13 and 9 μg/ml for FDC and FMCP, respectively. This method has been used to determine the pharmacokinetic profile of these two perfluorochemical compounds in blood following administration of 1.3 g of FDC and 0.65 g of FMCP per kg body weight, in emulsion form, in rat.  相似文献   

15.
A method for the quantification of clindamycin in human serum and in human bone tissue samples applying high-performance liquid chromatography with atmospheric pressure chemical ionization–mass spectrometry (APCI–MS) is presented. Lincomycin is used as the internal standard. Serum samples are prepared only by protein precipitation with acetonitrile. Bone tissue samples have to be crushed and homogenized in extraction buffer prior to analysis. The chromatographic separation is achieved on an RP-18 stationary phase with 0.02% trifluoroacetic acid in water 60%/acetonitrile 40% v/v as mobile phase. The limits of quantification are 0.1 μg/ml for serum samples and 0.1 μg/g for bone tissue samples. The coefficients of variation for the assays are 4.48 and 8.41% at the limit of quantification for serum and bone tissue samples, respectively. Bone tissue samples as small as 50 mg can be used.  相似文献   

16.
A stable-isotope based gas chromatography–tandem mass spectrometry–negative ion chemical ionization method was developed for the determination of norepinephrine (NE) levels in small volumes (25–100 μl) of plasma. NE was stabilized in plasma by the addition of semicarbazide and spiked with deuterium-labeled norepinephrine internal standard. The analytes were isolated from the plasma by solid-phase extraction using phenylboronic acid columns and derivatized using pentafluoropropionic anhydride. The derivatized analytes were chromatographed on a capillary column and detected by tandem mass spectrometry with negative ion chemical ionization. Unparalleled sensitivity and selectivity were obtained using this detection scheme, allowing the unambiguous analysis of trace levels of NE in small-volume plasma samples. Linear standard curves were obtained for NE over a mass range from 1 to 200 pg per sample. The method had a limit of quantitation of 10 pg NE/ml plasma when using a 100-μl sample aliquot (1 pg/sample). Accuracy for the analysis of plasma samples spiked with 10 to 200 pg NE/ml typically ranged from 100±10%, with RSD values of less than 10%. The methodology was applied to determine the effect of clonidine on plasma NE levels in conscious spontaneously hypertensive rats. Administration of clonidine (30 μg/kg) produced an 80% reduction in plasma NE accompanied by a 30% reduction in heart and mean arterial pressure that persisted >90 min after drug administration. The ability to take multiple samples from individual rats allowed the time course for the effect of clonidine to be mapped out using only one group of animals.  相似文献   

17.
A rapid HPLC method with solid-phase extraction (SPE) clean-up for malachite green (MG) and leucomalachite green (LMG) in eel plasma was developed. MG and LMG were extracted with a buffered methanolic solution. The extract was subjected to aromatic sulphonic acid SPE. MG and LMG were eluted from the SPE column with methanol after a treatment with ammonia gas. The reconstituted eluate was analyzed on a Chromspher B column with acetonitrile-ion-pair buffer (ph 4.0) (6:4, v/v) as the mobile phase and detection at 610 nm after post column oxidation with PbO2. The average recoveries for MG and LMG over the linear range of applicability (20–2500 ng/ml) were 82±1% and 83±1%, respectively. The limits of quantification were 5.0 μg/1 for MG and 0.9 μ/1 for LMG.  相似文献   

18.
A simple and highly sensitive method is described for the HPLC determination of 4-nonylphenol (NP), 4-nonylphenol mono- (NP1EO) and diethoxylates (NP2EO) in fish and shellfish together with bisphenol A (BPA), 4-tert.-butylphenol (BP) and 4-tert.-octylphenol (OP). The NP, NP1EO, NP2EO and other alkylphenols in the samples are extracted with acetonitrile and the lipid in the sample extract is eliminated by partitioning between hexane and acetonitrile. After Florisil PR clean-up the sample extract is analyzed by HPLC with a fluorescence detection. Recoveries in Japanese smelt, carp and corbicura are 81.8–84.3% for NP, 83.5–84.3% for NP1EO, 90.5–96.2% for NP2EO, 70.7–72.9% for BPA, 71.0–73.4% for BP and 77.1–83.2% for OP spiked at 0.5 μg each chemical per 5 g of the fish and shellfish samples. The detection limits are 2 ng/g for NP, NP1EO and NP2EO, and 1ng/g for BPA, BP and OP.  相似文献   

19.
Human metabolism of the insecticide propoxur yields 2-isopropoxyphenol (IPP) which is excreted conjugated in urine. In this publication a sensitive and selective analytical method is described which permits the determination of IPP as a suitable parameter for biomonitoring. The clean-up of the hydrolysed urine samples consisted of steam distillation and solid-phase extraction using a reversed-phase column. IPP and the internal standard 2-ethoxyphenol were converted to their pentafluorobenzyl ethers. Excess of the derivatisation reagent was removed using deactivated silica gel. Separation and quantitative analysis was carried out by capillary gas chromatography and mass selective detection. Coefficients of variation were below 5% for concentrations from 6 to 300 μg/l. The detection limit was 0.5 μg/l. The method was checked by analysing six urine samples from pest controllers after indoor application of propoxur. The IPP concentrations ranged from 45 to 306 μg/g creatinine. IPP was not detected in urine specimens from 10 non-exposed persons. The sensitivity of the developed method permits the detection of latent exposure to propoxur.  相似文献   

20.
A column-switching high-performance liquid chromatographic assay is described for the determination of ceftazidime (a third-generation cephalosporin) in human serum. The method does not require prior sample pretreatment. Serum is directly injected in a first chromatographic column for sample clean-up and extraction. Thereafter, using an on-line column-switching system, the drug is quantitatively transferred and separated on a second, analytical column followed by determination using ultraviolet absorption at 258 nm. The technique allows direct, rapid, precise, and simple determination of ceftazidime in serum over the range of 1–250 μg/ml using 12.5 μl of serum. This method was applied to study the pharmacokinetics of the drug in patients undergoing vascular surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号