首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

In HIV-1 infected patients, production of interleukin-10 (IL-10), a highly immunosuppressive cytokine, is associated with progression of infection toward AIDS. HIV-1 Tat protein, by interacting with TLR4-MD2 at the membrane level, induces IL-10 production by primary human monocytes and macrophages. In the present study we evaluated the effect of the TLR4 antagonist Eritoran tetrasodium (E5564) on HIV-1 Tat-induced IL-10 production.

Findings

Here, we confirm that the recombinant HIV-1 Tat protein and the GST-Tat 1–45 fusion protein efficiently stimulate IL-10 production by primary monocytes and macrophages and that this stimulation is inhibited by blocking anti-TLR4 mAbs. We show that a similar inhibition is observed by preincubating the cells with the TLR4 antagonist E5564.

Conclusion

This study provides compelling data showing for the first time that the TLR4 antagonist E5564 inhibits the immunosuppressive cytokine IL-10 production by primary human monocytes and macrophages incubated in the presence of HIV-1 Tat protein.
  相似文献   

3.
4.
HIV-1 Tat protein stimulates the production of both TNF-alpha and IL-10 in human monocytes. Taking into account the ability of TNF-alpha to induce IL-10 production, we evaluated the link between Tat, TNF-alpha and IL-10 and the implication of PKC and p38 MAP kinase pathways. Our data showed that (i) in the presence of neutralizing anti-TNF-alpha antibodies, IL-10 production is only partially inhibited; (ii) in a calcium-free medium, while TNF-alpha production is totally inhibited, Tat continues to induce IL-10; (iii) under these conditions, Tat-mediated IL-10 production is associated with PKC-delta activation; and (iv) downstream of PKC, p38 MAP kinase is crucial for TNF-alpha independent IL10 production. Overall, our data suggest a new mechanism, implicating Tat protein, by which HIV-1 may maintain a constant production of the immunosuppressive IL-10 cytokine, even in the absence of TNF-alpha production. In consequence, HIV-1 may escape immune surveillance and thus promote the establishment of an immunosuppressive state.  相似文献   

5.
The clade B human immunodeficiency virus, type 1 (HIV-1) Tat (trans-acting regulatory protein) induces interleukin-10 (IL-10) production in monocytes. IL-10, an anti-inflammatory cytokine, down-regulates proinflammatory cytokines and suppresses the immune response, leading to a rapid progression from HIV-1 infection to AIDS. Nine clades of HIV-1 are responsible for the majority of infections worldwide. Recent studies demonstrate that different HIV-1 clades have biological differences in relation to transmission, replication, and disease progression. In this study, we show that the cysteine to serine mutation at position 31, found in >90% of HIV-1 clade C Tat proteins, results in a marked decrease in IL-10 production in monocytes compared with clade B Tat. Additionally, the C31S mutation found in C Tat is responsible for the inability of these Tat proteins to produce high IL-10 levels in monocytes due to its inability to induce intracellular calcium flux through L-type calcium channels. Moreover, we show that p38α/p38β and phosphoinositide 3-kinase are crucial to Tat-induced IL-10 production. These findings provide further evidence that HIV-1 clades differ in their biological properties that may impact HIV-1 pathogenesis and disease progression.  相似文献   

6.
A finding commonly observed in human immunodeficiency virus type 1 (HIV-1)-infected patients is invasion of the brain by activated T cells and infected macrophages, eventually leading to the development of neurological disorders and HIV-1-associated dementia. The recruitment of T cells and macrophages into the brain is likely the result of chemokine expression. Indeed, earlier studies revealed that levels of different chemokines were increased in the cerebrospinal fluid of HIV-1-infected patients whereas possible triggers and cellular sources for chemokine expression in the brain remain widely undefined. As previous studies indicated that HIV-1 Tat, the retroviral transactivator, is capable of inducing a variety of cellular genes, we investigated its capacity to induce production of chemokines in astrocytes. Herein, we demonstrate that HIV-1 Tat(72aa) is a potent inducer of MCP-1, interleukin-8 (IL-8), and IP-10 expression in astrocytes. Levels of induced IP-10 protein were sufficiently high to induce chemotaxis of peripheral blood lymphocytes. In addition, Tat(72aa) induced IL-8 expression in astrocytes. IL-8 mRNA induction was seen less then 1 h after Tat(72aa) stimulation, and levels remained elevated for up to 24 h, leading to IL-8 protein production. Tat(72aa)-mediated MCP-1 and IL-8 mRNA induction was susceptible to inhibition by the MEK1/2 inhibitor UO126 but was only modestly decreased by the inclusion of the p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190. In contrast, Tat-mediated IP-10 mRNA induction was suppressed by SB202190 but not by the MEK1/2 inhibitor UO126. These findings indicate that MAPKs play a major role in Tat(72aa)-mediated chemokine induction in astrocytes.  相似文献   

7.
Increased levels of inflammatory cytokines, including tumor necrosis factor (TNF), interleukin-1 (IL-1), and IL-6, have been detected in specimens from human immunodeficiency virus type 1 (HIV-1)-infected individuals. Here we demonstrate that HIV-1 activates the expression of TNF but not of IL-1 and IL-6 in acutely and chronically infected T cells. The increase in TNF gene expression is due to activation of the TNF promoter by the viral gene product Tat. Transactivation of TNF gene expression requires the product of the first exon of the tat gene and is cell type independent. T cells chronically infected with pol-defective HIV-1 provirus constitutively express both Tat and TNF at levels significantly higher (fivefold) than those seen in control cells, and treatment with phorbol myristate acetate greatly enhances Tat expression and TNF production. As TNF can increase the production of IL-1 and IL-6 and these inflammatory cytokines all enhance HIV-1 gene expression and affect the immune, vascular, and central nervous systems, the activation of TNF by Tat may be part of a complex pathway in which HIV-1 uses viral products and host factors to increase its own expression and infectivity and to induce disease.  相似文献   

8.
The Jurkat T cell line was stably transfected with an Epstein-Barr virus-based episomal replicon designed to express high levels of the HIV-1 Tat protein. After selection in hygromycin B, high-level Tat activity was detected in 3 of 18 transfected cell lines. After stimulation with phytohemagglutinin (PHA) and phorbol myristate acetate (PMA), Tat transfectants with high Tat expression showed diminished expression of interleukin-2 (IL-2) and the interleukin-2 receptor alpha chain (IL-2R) when compared to untransfected Jurkat cells or Jurkat cell lines transfected with the parent control plasmid. Sublines derived from the high-level Tat transfectants with reduced Tat activity showed normalization of PHA/PMA-induced IL-2 expression. Northern analysis showed diminished expression of IL-2 and IL-2R mRNA in the stimulated Tat transfectants. Inhibition of IL-2 and IL-2R expression by the HIV-1 Tat protein may contribute to the immune suppression that characterizes HIV-1 infection.  相似文献   

9.
10.
11.
We recently reported that the human immunodeficiency virus type-1 (HIV-1) Tat protein induced the expression of programmed death ligand-1 (PD-L1) on dendritic cells (DCs) through a TLR4 pathway. However, the underlying mechanisms by which HIV-1 Tat protein induces the abnormal hyper-activation of the immune system seen in HIV-1 infected patients remain to be fully elucidated. In the present study, we report that HIV-1 Tat protein induced the production of significant amounts of the pro-inflammatory IL-6 and IL-8 cytokines by DCs and monocytes from both healthy and HIV-1 infected patients. Such production was abrogated in the presence of anti-TLR4 blocking antibodies or soluble recombinant TLR4-MD2 as a decoy receptor, suggesting TLR4 was recruited by Tat protein. Tat-induced murine IL-6 and CXCL1/KC a functional homologue of human IL-8 was abolished in peritoneal macrophages derived from TLR4 KO but not from Wt mice, confirming the involvement of the TLR4 pathway. Furthermore, the recruitment of TLR4-MD2-CD14 complex by Tat protein was demonstrated by the activation of TLR4 downstream pathways including NF-κB and SOCS-1 and by down-modulation of cell surface TLR4 by endocytosis in dynamin and lipid-raft-dependent manners. Collectively, these findings demonstrate, for the first time, that HIV-1 Tat interacts with TLR4-MD2-CD14 complex and activates the NF-κB pathway, leading to overproduction of IL-6 and IL-8 pro-inflammatory cytokines by myeloid cells from both healthy and HIV-1 infected patients. This study reveals a novel mechanism by which HIV-1, via its early expressed Tat protein, hijacks the TLR4 pathway, hence establishing abnormal hyper-activation of the immune system.  相似文献   

12.
The effect of HIV-1 Tat protein on the production of IL-10, an immunosuppressive cytokine, was examined in human primary monocytes obtained from healthy HIV-1-negative blood donors. As expected and in agreement with our previous data, a dose-dependent induction of IL-10 was observed. In addition, we showed that this induction is mediated by the PKC pathway: in the presence of Ro 31-8220, an inhibitor of all PKC isozymes, or after 48 h of PMA treatment, Tat protein becomes unable to stimulate IL-10 production. Among the 11 PKC isozymes, eight (PKC alpha, beta(I), beta(II), delta, epsilon, eta, zeta, mu) are expressed in monocytes. In this study, by analyzing the translocation to the membrane after Tat stimulation, we showed that PKC alpha, beta(I), beta(II), delta and epsilon isozymes are activated by Tat. Moreover, by combining different approaches including selective PKC inhibitors (G?6983, G?6976, hispidin and rottlerin), we showed that PKC beta(II) and delta isozymes are essential for the activation of IL-10 production in human monocytes following stimulation by HIV-1 Tat protein.  相似文献   

13.
Boykins RA  Ardans JA  Wahl LM  Lal RB  Yamada KM  Dhawan S 《Peptides》2000,21(12):1839-1847
We report here a novel, highly immunogenic synthetic, multiple-peptide conjugate comprising functional domains Tat21–40 and Tat53–68 from HIV-1 group M plus Tat9–20 from HIV-1 group O of the HIV-Tat protein (HIV-1-Tat-MPC). Vaccination of mice with HIV-1-Tat-MPC induced an effective immune response to all three functional domains. The anti-HIV-1-Tat-MPC antibodies efficiently inhibited Tat-induced viral activation in monocytes infected with HIVBa-L as well as with various clinical HIV-1 isolates, and reduced Tat-mediated cytopathicity in infected cells by 60–75%. Our results indicate that anti-HIV-1-Tat-MPC antibodies inhibit viral pathogenesis, possibly by blocking functional determinants of Tat and disrupting autocrine and paracrine actions of secreted Tat protein. This epitope-specific, synthetic Tat construct may, therefore, provide a subunit AIDS vaccine candidate for inducing an effective immunoprophylaxis response to reduce progression of HIV infection.  相似文献   

14.
15.
The human immunodeficiency virus (HIV) transactivating Tat protein is not only critical for viral replication but also affects the host immune system by inducing the production of cytokines such as IL-10. This anti-inflammatory cytokine is upregulated during the course of HIV infection, representing an important pathway by which HIV may induce immunodeficiency. Here, we show that, by acting at the membrane, Tat induces IL-10 expression in primary monocytes and promonocytic U937 cells by NF-kappaB-dependent pathways. The trans-dominant negative mutants of NF-kappaB-inducing kinase (NIK), IKKalpha and IKKbeta expressed in our transactivation model, in accordance with the nuclear binding of p65 and p52 NF-kappaB subunits to the IL-10 promoter, suggest the involvement of both classical and alternative NF-kappaB pathways. In inactivated cells, IKKalpha is localized predominantly in the cytoplasm. Interestingly, Tat stimulates IKKalpha translocation from the cytoplasm to the nucleus in monocytes. Chromatin immunoprecipitation (ChIP) assay experiments, after Tat treatment, revealed IKKalpha and CBP/p300 recruitment to the IL-10 promoter and histone H3 phosphorylation (Ser 10) and acetylation (Lys 14) in this region, presumably leading to chromatin remodeling. We demonstrate that, upstream of NF-kappaB, PKC, ERK1/2 and p38 MAP kinases are involved in Tat-induced IKKalpha nuclear translocation and histone H3 modifications on the IL-10 promoter in accordance with the role of these three kinases in IL-10 production. As a whole, the study demonstrates that Tat activates at least three signaling pathways concurrently, including the classical, alternative and IKKalpha pathways, to promote production of IL-10.  相似文献   

16.
17.
Yang X  Gabuzda D 《Journal of virology》1999,73(4):3460-3466
ERK1 and ERK2 mitogen-activated protein kinases (MAPK) play a critical role in regulation of cell proliferation and differentiation in response to mitogens and other extracellular stimuli. Mitogens and cytokines that activate MAPK in T cells have been shown to activate human immunodeficiency virus type 1 (HIV-1) replication. Little is known about the signal transduction pathways that activate HIV-1 replication in T cells upon activation by extracellular stimulation. Here, we report that activation of MAPK through the Ras/Raf/MEK signaling pathway enhances the infectivity of HIV-1 virions. Virus infectivity was enhanced by treatment of cells with MAPK stimulators, such as serum and phorbol myristate acetate, as well as by coexpression of constitutively activated Ras, Raf, or MEK (MAPK kinase) in the absence of extracellular stimulation. Treatment of cells with PD 098059, a specific inhibitor of MAPK activation, or with a MAPK antisense oligonucleotide reduced the infectivity of HIV-1 virions without significantly affecting virus production or the levels of virion-associated Gag and Env proteins. MAPK has been shown to regulate HIV-1 infectivity by phosphorylating Vif (X. Yang and D. Gabuzda, J. Biol. Chem. 273:29879-29887, 1998). However, MAPK activation enhanced virus infectivity in some cells lines that do not require Vif function. The HIV-1 Rev, Tat, p17(Gag), and Nef proteins were directly phosphorylated by MAPK in vitro, suggesting that other HIV-1 proteins are potential substrates for MAPK phosphorylation. These results suggest that activation of the ERK MAPK pathway plays a role in HIV-1 replication by enhancing the infectivity of HIV-1 virions through Vif-dependent as well as Vif-independent mechanisms. MAPK activation in producer cells may contribute to the activation of HIV-1 replication when T cells are activated by mitogens and other extracellular stimuli.  相似文献   

18.
Infection with HIV-1 causes degeneration of neurons leading to motor and cognitive dysfunction in AIDS patients. One of the key viral regulatory proteins, Tat, which is released by infected cells, can be taken up by various uninfected cells including neurons and by dysregulating several biological events induces cell injury and death. In earlier studies, we demonstrated that treatment of neuronal cells with Tat affects the nerve growth factor (NGF) signaling pathway involving MAPK/ERK. Here we demonstrate that a decrease in the level of Egr-1, one of the targets for MAPK, by Tat has a negative impact on the level of p35 expression in NGF-treated neural cells. Further, we demonstrate a reduced level of Egr-1 association with the p35 promoter sequence in NGF-treated cells expressing Tat. As p35, by associating with Cdk5, phosphorylates several neuronal proteins including neurofilaments and plays a role in neuronal differentiation and survival, we examined kinase activity of p35 complexes obtained from cells expressing Tat. Results from H1 kinase assays showed reduced activity of the p35 complex from Tat-expressing cells in comparison to that from control cells. Accordingly, the level of phosphorylated neurofilaments was diminished in Tat-expressing cells. Similarly, treatment of PC12 cells with Tat protein or supernatant from HIV-1 infected cells decreased kinase activity of p35 in these cells. These observations ascribe a role for Tat in altering p35 expression and its activity that affects phosphorylation of proteins involved in neuronal cell survival.  相似文献   

19.
Kaposi's sarcoma (KS) arises more frequently in homosexual and bisexual men than in other groups of HIV-1 infected individuals. Clinico-epidemiologic data indicate that homosexuals often are infected with multiple microbial agents and/or subjected to other antigenic stimuli, preceding or accompanying HIV-1 infection. Signs of immune activation, in fact, frequently have been detected in these individuals, and the onset of KS can precede any sign of immunodeficiency. These data have suggested that products from activated immune cells may affect the development of AIDS-KS. Here we report that conditioned media from activated or dysregulated T cells contain a variety of cytokines that promote the growth of spindle cells derived from KS lesions of AIDS patients (AIDS-KS cells) and induce normal vascular cells, potential cell progenitors of the AIDS-KS cells, to acquire features of the KS cell phenotype ("spindle" cell morphology and growth responsiveness to the mitogenic effect of extracellular HIV-1 Tat protein). The same conditioned media or cytokines promote HIV-1 gene expression and rescue defective HIV-1 proviruses, interrupting HIV-1 latency and increasing Tat production. The cellular and viral effects of cytokines are increased in an additive or synergistic manner by picomolar concentrations of extracellular Tat. These data suggest that cytokines produced by activated immune cells cooperate with HIV-1 infection in AIDS-KS pathogenesis.  相似文献   

20.
Human immunodeficiency virus (HIV) infection and the progression to AIDS are characterized by the depletion of CD4(+) T-cells. HIV-1 infection leads to apoptosis of uninfected bystander cells and the direct killing of HIV-infected cells. This is mediated, in part, by the HIV-1 Tat protein, which is secreted by virally infected cells and taken up by uninfected cells. We chemically synthesized two 86-residue subtype D Tat proteins, Ug05RP and Ug11LTS, from two Ugandan patients who were clinically categorized as either rapid progressor or long-term survivor, with non-conservative mutations located essentially in the glutamine-rich region. Structural heterogeneities were revealed by CD, which translate into differing trans-activational and apoptotic effects. CD data analysis and molecular modeling indicated that the short alpha-helix observed in subtype D Tat proteins from rapid progressor patients such as Tat Mal and Tat Ug05RP is not present in Ug11LTS. We show that Tat Ug05RP is more efficient than Tat Ug11LTS in its trans-activational role and in inducing apoptosis in binding tubulin via the mitochondrial pathway. The glutamine-rich region of Tat appears to be involved in the Tat-mediated apoptosis of T-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号