首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kemp, John D. (University of California, Los Angeles), and Daniel E. Atkinson. Nitrite reductase of Escherichia coli specific for reduced nicotinamide adenine dinucleotide. J. Bacteriol. 92:628-634. 1966.-A nitrite reductase specific for reduced nicotinamide adenine dinucleotide (NADH(2)) appears to be responsible for in vivo nitrite reduction by Escherichia coli strain Bn. In extracts, the reduction product is ammonium, and the ratio of NADH(2) oxidized to nitrite reduced or to ammonium produced is 3. The Michaelis constant for nitrite is 10 mum. The enzyme is induced by nitrite, and the ability of intact cells to reduce nitrite parallels the level of NADH(2)-specific nitrite reductase activity demonstrable in cell-free preparations. Crude extracts of strain Bn will also reduce hydroxylamine, but not nitrate or sulfite, at the expense of NADH(2). Kinetic observations indicate that hydroxylamine and nitrite may both be reduced at the same active site. The high apparent Michaelis constant for hydroxylamine (1.5 mm), however, seems to exclude hydroxylamine as an intermediate in nitrite reduction. In vitro activity is enhanced by preincubation with nitrite, and decreased by preincubation with NADH(2).  相似文献   

2.
Nitrite reductase purified to homogeneity from vegetable marrow contains 2 atoms Fe/mol. Enzyme-bound iron exchanged extremely slowly with 59-Fe in solution. Acid-acetone extracts of the enzyme have a spectrum which is consistent with the presence of a sirohaem prosthetic group. Inhibition by mersalyl, which partially bleaches the enzyme, is reversible by glutathione only if this is added within a few min of mersalyl. The absorption spectra of the reduced and autoxidised enzyme and of the nitrite, cyanide and CO complexes are described. Amino acid composition data are given. The hydroxylamine reductase activity of the purified enzyme was 0.2% of nitrite reductase activity.  相似文献   

3.
Anaerobic cytochrome c552 was purified to electrophoretic homogeneity by ion-exchange chromatography and gel filtration from a mutant of Escherichia coli K 12 that synthesizes an increased amount of this pigment. Several molecular and enzymatic properties of the cytochrome were investigated. Its relative molecular mass was determined to be 69 000 by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. It was found to be an acidic protein that existed in the monomeric form in the native state. From its heme and iron contents, it was concluded to be a hexaheme protein containing six moles of heme c/mole protein. The amino-acid composition and other properties of the purified cytochrome c552 indicated its similarity to Desulfovibrio desulfuricans hexaheme cytochrome. The cytochrome c552 showed nitrite and hydroxylamine reductase activities with benzyl viologen as an artificial electron donor. It catalyzed the reduction of nitrite to ammonia in a six-electron transfer. FMN and FAD also served as electron donors for the nitrite reduction. The apparent Michaelis constants for nitrite and hydroxylamine were 110 microM and 18 mM, respectively. The nitrite reductase activity of the cytochrome c552 was inhibited effectively by cupric ion and cyanide.  相似文献   

4.
1. Cells of Nitrosomonas europaea produced N(2)O during the oxidation of ammonia and hydroxylamine. 2. The end-product of ammonia oxidation, nitrite, was the predominant source of N(2)O in cells. 3. Cells also produced N(2)O, but not N(2) gas, by the reduction of nitrite under anaerobic conditions. 4. Hydroxylamine was oxidized by cell-free extracts to yield nitrite and N(2)O aerobically, but to yield N(2)O and NO anaerobically. 5. Cell extracts reduced nitrite both aerobically and anaerobically to NO and N(2)O with hydroxylamine as an electron donor. 6. The relative amounts of NO and N(2)O produced during hydroxylamine oxidation and/or nitrite reduction are dependent on the type of artificial electron acceptor utilized. 7. Partially purified hydroxylamine oxidase retained nitrite reductase activity but cytochrome oxidase was absent. 8. There is a close association of hydroxylamine oxidase and nitrite reductase activities in purified preparations.  相似文献   

5.
Tn5 was used to generate mutants that were deficient in the dissimilatory reduction of nitrite for Pseudomonas sp. strain G-179, which contains a copper nitrite reductase. Three types of mutants were isolated. The first type showed a lack of growth on nitrate, nitrite, and nitrous oxide. The second type grew on nitrate and nitrous oxide but not on nitrite (Nir-). The two mutants of this type accumulated nitrite, showed no nitrite reductase activity, and had no detectable nitrite reductase protein bands in a Western blot (immunoblot). Tn5 insertions in these two mutants were clustered in the same region and were within the structural gene for nitrite reductase. The third type of mutant grew on nitrate but not on nitrite or nitrous oxide (N2O). The mutant of this type accumulated significant amounts of nitrite, NO, and N2O during anaerobic growth on nitrate and showed a slower growth rate than the wild type. Diethyldithiocarbamic acid, which inhibited nitrite reductase activity in the wild type, did not affect NO reductase activity, indicating that nitrite reductase did not participate in NO reduction. NO reductase activity in Nir- mutants was lower than that in the wild type when the strains were grown on nitrate but was the same as that in the wild type when the strains were grown on nitrous oxide. These results suggest that the reduction of NO and N2O was carried out by two distinct processes and that mutations affecting nitrite reduction resulted in reduced NO reductase activity following anaerobic growth with nitrate.  相似文献   

6.
Mutants of Salmonella typhimurium that lack the biosynthetic sulfite reductase (cysI and cysJ mutants) retain the ability to reduce sulfite for growth under anaerobic conditions (E. L. Barrett and G. W. Chang, J. Gen. Microbiol., 115:513-516, 1979). Here we report studies of sulfite reduction by a cysI mutant of S. typhimurium and purification of the associated anaerobic sulfite reductase. Sulfite reduction for anaerobic growth did not require a reducing atmosphere but was prevented by an argon atmosphere contaminated with air (less than 0.33%). It was also prevented by the presence of 0.1 mM nitrate, which argues against a strictly biosynthetic role for anaerobic sulfite reduction. Anaerobic growth in liquid minimal medium, but not on agar, was found to require additions of trace amounts (10(-7)M) of cysteine. Spontaneous mutants that grew under the argon contaminated with air also lost the requirement for 10(-7)M cysteine for anaerobic growth in liquid. A role for sulfite reduction in anaerobic energy generation was contraindicated by the findings that sulfite reduction did not improve cell yields, and anaerobic sulfite reductase activity was greatest during the stationary phase of growth. Sulfite reductase was purified from the cytoplasmic fraction of the anaerobically grown cysI mutant and was purified 190-fold. The most effective donor in crude extracts was NADH. NADPH and methyl viologen were, respectively, 40 and 30% as effective as NADH. Oxygen reversibly inhibited the enzyme. Two high-molecular-weight proteins separated by gel filtration (Mr 360,000 and 490,000, respectively) were required for maximal activity with NADH. Indirect evidence, including in vitro complementation experiments with a cysG mutant extract, suggested that the 360,000-Mr component contains siroheme and is the terminal reductase. This component was further purified to near homogeneity and was found to consist of a single subunit of molecular weight 67,500. The anaerobic sulfite reductase showed some resemblance to the biosynthetic sulfite reductase, but apparently it has a unique, as yet unidentified function.  相似文献   

7.
The distribution of nitrite reductase (EC 1.7.7.1) and sulfite reductase (EC 1.8.7.1) between mesophyll ceils and bundle sheath cells of maize ( Zea mays L. cv. Seneca 60) leaves was examined. This examination was complicated by the fact that both of these enzymes can reduce both NO-2 and SO2-3 In crude extracts from whole leaves, nitrite reductase activity was 6 to 10 times higher than sulfite reductase activity. Heat treatment (10 min at 55°C) caused a 55% decrease in salfite reductase activity in extracts from bundle sheath cells and mesophyll cells, whereas the loss in nitrite reductase activity was 58 and 82% in bundle sheath cells and mesophyll cell extracts, respectively. This result was explained, together with results from the literature, by the hypothesis that sulfite reductase is present in both bundle sheath cells and mesophyll cells, and that nitrite reductase is restricted to the mesophyll cells. This hypothesis was tested i) by comparing the distribution of nitrite reductase activity and sulfite reductase activity between bundle sheath and mesophyll cells with the presence of the marker enzymes ribulose-l, 5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoe-nolpyruvate carboxylase (EC 4.1.1.32), ii) by examining the effect of cultivation of maize plants in the dark without a nitrogen source on nitrite reductase activity and sulfite reductase activity in the two types of cells, and iii) by studying the action of S2-on the two enzyme activities in extracts from bundle sheath and mesophyll cells. The results from these experiments are consistent with the above hypothesis.  相似文献   

8.
The Neurospora crassa assimilatory NADPH-nitrite reductase (NAD(P)H: nitrite oxidoreductase, EC 1.6.6.4), which catalyzes the NADPH-dependent formation of ammonia from nitrite, has been purified to homogeneity as judged by polyacrylamide gel electrophoresis. The specific activity of the purified enzyme is 26.9 mumol nitrite reduced/min per mg protein, which corresponds to a turnover number of 7800 min(-1). The enzyme also has associated NADH-nitrite reductase, NADPH-hydroxylamine reductase and NADH-hydroxylamine reductase activities. The stoichiometry of 3 mol NADPH oxidized per mol nitrite reduced and ammonia formed has been confirmed. The visible absorption spectrum of the nitrite reductase reveals maxima at 280,390 (Soret) and 580 (alpha) nm. The latter bands are indicative of the occurrence of siroheme as a prosthetic group. The A280nm/A390nm ratio of 7.0 and the Soret/alpha ratio of 3.8 are compatible with values reported for other purified siroheme-containing enzymes. These results are discussed in terms of the comparative biochemistry of various enzymes involved in nitrite, hydroxylamine and sulfite metabolism in Neurospora crassa and other organisms.  相似文献   

9.
10.
The Neurospora crassa assimilatory NAD(P)H-nitrite reductase complex has associated a NAD(P)H-diaphorase activity. 1. This NAD(P)H-diaphorase activity can use either mammalian cytochrome c, 2,6--dichlorophenol-indophenol, ferricyanide, or menadione as electron acceptor from the reduced pyridine nucleotides, and requires flavin adenine dinucleotide for maximal activity. 2. It is inhibited by p-hydroxymercuribenzoate, 1 muM, and it is unaffected by cyanide, sulfite, or arsenite at concentrations which completely inhibit the NAD(P)H-nitrite reductase activity. 3. Flavin adenine dinucleotide specifically protects the NAD(P)H-diaphorase activities, but not the NAD(P)H-nitrite reductase activities, against thermal inactivation. 4. In vitro preincubation of the Neurospora crassa nitrite reductase complex with reduced pyridine nucleotides plus flavin adenine dinucleotide inactivates the NAD(P)H-nitrite reductase activities, but does not affect the NAD(P)H-diaphorase activities, indicating that this nitrite reductase inactivation occurs in the part of the enzyme that contain the nitrite reducing center.  相似文献   

11.
Nitrite reductase from Clostridium perfringens was purified by chromatographies on DEAE-cellulose, DEAE-Sephadex, Sephadex G-150, and hydroxylapatite and by isoelectric focussing to a homogeneous state, showing essentially a single protein band in disc gel electrophoresis and a single immuno-precipitation line in double diffusion against antiserum obtained from immunized rabbits. The reductase was induced in the presence of nitrate. It had a molecular weight of 54,000 and showed no absorption peak in the visible region. The pH optimum was 6.2 and Km for nitrite was 5 mM. Ferredoxin, as well as viologen dyes, was found to be an electron donor. The product of nitrite reduction was hydroxylamine. This reductase was inhibited by o-phenanthroline and azide but not by cyanide or diethyldithiocarbamate.  相似文献   

12.
A highly active cytochrome c nitrite reductase from the haloalkaliphilic sulfur-oxidizing non-ammonifying bacterium Tv. nitratireducens strain ALEN 2 (TvNiR) was isolated and purified to apparent electrophoretic homogeneity. The enzyme catalyzes reductive conversion of nitrite and hydroxylamine to ammonia without release of any intermediates, as well as reduction of sulfite to sulfide. TvNiR also possesses peroxidase activity. In solution TvNiR exists as a stable hexamer with molecular mass of about 360kDa. Each TvNiR subunit with molecular mass of 64kDa contains, as defined from spectral properties and sequence analysis, eight c-type haems. Seven of them are coordinated by the characteristic CXXCH motifs for haem c binding, while one is bonded by the unique CXXCK motif. So far, this motif coordinating the catalytic haem was found only in bacterial cytochrome c nitrite reductases (ccNiRs). All the residues essential for catalysis in the known ccNiRs were also identified in TvNiR. However, TvNiR is only distantly related to known bacterial ammonifying dissimilatory ccNiRs, sharing no more than 20% homology.  相似文献   

13.
Three enzymes contribute to the total hydroxylamine reductase activity of corn (Zea mays L.) scutellum extracts. Two of these resemble enzymes previously prepared from leaves, while the third, which accounts for a major part of the activity, appears to have no counterpart in leaf tissue. One of the hydroxylamine reductases found only in small amounts is associated with nitrite reductase and is induced, together with nitrite reductase, by nitrite. The other two enzymes are noninducible by nitrite and can be totally separated from nitrite reductase, which subsequently remains capable of catalyzing the reduction of nitrite to ammonia. Possible causes of the decline of hydroxylamine reductase activity during the induction of nitrite reductase are discussed.  相似文献   

14.
Nitrite reductase has been separated from cell-free extracts of Nitrosomonas and partially purified from hydroxylamine oxidase by polyacrylamide-gel electrophoresis. In its oxidized state the enzyme, which did not contain haem, had an extinction maximum at 590nm, which was abolished on reduction. Sodium diethyldithiocarbamate was a potent inhibitor of nitrite reductase. Enzyme activity was stimulated 2.5-fold when remixed with hydroxylamine oxidase, but was unaffected by mammalian cytochrome c. The enzyme also exhibited a low hydroxylamine-dependent nitrite reductase activity. The results suggest that this enzyme is similar to the copper-containing ;denitrifying enzyme' of Pseudomonas denitrificans. A dithionite-reduced, 465nm-absorbing haemoprotein was associated with homogeneous preparations of hydroxylamine oxidase. The band at 465nm maximum was not reduced during the oxidation of hydroxylamine although the extinction was abolished on addition of hydroxylamine, NO(2) (-) or CO. These last-named compounds when added to the oxidized enzyme precluded the appearance of the 465nm-absorption band on addition of dithionite. Several properties of 465nm-absorbing haemoprotein are described.  相似文献   

15.
Nitrite Formation from Hydroxylamine and Oximes by Pseudomonas aeruginosa   总被引:1,自引:0,他引:1  
Nitrite was formed from hydroxylamine and several oximes by intact cells and extracts of Pseudomonas aeruginosa. The activity was induced by the presence of oximes in the culture medium. Nitroalkanes were not intermediates in the conversion of acetaldoxime, acetone oxime, or butanone oxime to nitrite, since nitromethane inhibited the formation of nitrite from the nitro compounds but not from the corresponding oximes. The oxime apparently functions as a constant source of hydroxylamine during growth of the bacterium. Hydroxylamine at low concentration was converted stoichiometrically to nitrite by extracts of the bacterium; high concentrations were inhibitory. Nicotinamide adenine dinucleotide phosphate, oxygen, and other unidentified cofactors were necessary for the reaction. Actively nitrifying extracts possessed no hydroxylamine-cytochrome c reductase activity. Hyponitrite, nitrous oxide, and nitric oxide were not metabolized.  相似文献   

16.
NADH-nitrite oxidoreductase (EC 1.6.4) was purified to better than 95% homogeneity from batch cultures of Escherichia coli strain OR75Ch15, which is partially constitutive for nitrite reductase synthesis. Yields of purified enzyme were low, mainly because of a large loss of activity during chromatography on DEAE-cellulose. The quantitative separation of cytochrome c-552 from nitrite reductase activity resulted in an increase in the specific activity of the enzyme: this cytochrome is not therefore an integral part of nitrite reductase. The subunit molecular weights of nitrite reductase and of a haemoprotein contaminant, as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, were 88000 and 80000 respectively. The sedimentation coefficient was calculated to be in the range 8.5-9.5S, consistent with a mol.wt. of 190000. It is suggested therefore that the native enzyme is a dimer with two identical or similar-sized subunits. Purest samples contained 0.4 mol of flavin/mol of enzyme, but no detectable haem. Catalytic activity was totally inhibited by 20 micron-p-chloromercuribenzoate and 1 mM-cyanide, slightly inhibited by 1 micron-sulphite and 10mM-arsenite, but insensitive to 1 mM-2,2'-bipyridine, 4mM-1,10-phenanthroline and 10mM-NaN3. Three molecules of NADH were oxidized for each NO2-ion reduced: the product of the reaction is therefore assumed to be NH4+. The specific activity of hydroxylamine reductase increased at each step in the purification of nitrite reductase, and the elution profiles for these two activities during chromatography on DEAE-Sephadex were coincident. It is likely that a single enzyme is responsible for both activities.  相似文献   

17.
A Desulfovibrio vulgaris Hildenborough mutant lacking the nrfA gene for the catalytic subunit of periplasmic cytochrome c nitrite reductase (NrfHA) was constructed. In mid-log phase, growth of the wild type in medium containing lactate and sulfate was inhibited by 10 mM nitrite, whereas 0.6 mM nitrite inhibited the nrfA mutant. Lower concentrations (0.04 mM) inhibited the growth of both mutant and wild-type cells on plates. Macroarray hybridization indicated that nitrite upregulates the nrfHA genes and downregulates genes for sulfate reduction enzymes catalyzing steps preceding the reduction of sulfite to sulfide by dissimilatory sulfite reductase (DsrAB), for two membrane-bound electron transport complexes (qmoABC and dsrMKJOP) and for ATP synthase (atp). DsrAB is known to bind and slowly reduce nitrite. The data support a model in which nitrite inhibits DsrAB (apparent dissociation constant K(m) for nitrite = 0.03 mM), and in which NrfHA (K(m) for nitrite = 1.4 mM) limits nitrite entry by reducing it to ammonia when nitrite concentrations are at millimolar levels. The gene expression data and consideration of relative gene locations suggest that QmoABC and DsrMKJOP donate electrons to adenosine phosphosulfate reductase and DsrAB, respectively. Downregulation of atp genes, as well as the recorded cell death following addition of inhibitory nitrite concentrations, suggests that the proton gradient collapses when electrons are diverted from cytoplasmic sulfate to periplasmic nitrite reduction.  相似文献   

18.
Sulfite reductase activity by algal extracts was investigated using reduced methylviologen as a hydrogen donor. Sulfite reductase appears to be widely distributed in various algae, but the enzymatic activity was not detected in the brown algae examined. The addition of phosphate buffer to the reaction mixture caused a marked decrease in activity. Sulfite reductase was partially purified from the autolysate of Porphyra tenera and some properties were studied. The optimal pH was 7.5 to 8.5 in Tris-HGl buffer system. The Km for sulfite was 6.65 × 10?4m. The enzymatic activity was completely inhibited by potassium cyanide at 5 × 10?4m. The enzyme catalyzed the reduction of sulfite to sulfide. Neither NADPH nor NADH acts as a hydrogen donor. However, it was revealed that ferredoxin can act as an electron carrier in sulfite reduction to sulfide in Porphyra extract.  相似文献   

19.
Evidence is presented for the presence of nitrite reductasein citrus leaves. The enzyme has a Km for nitrite of 45 mu andis inhibited by cyanide. However, unlike citrus nitrate reductase(l), it is probably not a metalloflavo protein, although itmay be related to iron. In addition to the enzymatic nitrite reduction, non-enzymaticnitrite reduction was present in citrus leaf preparations. Underin vivo assay conditions nitrite reduction in one-month-oldleaves was not inhibited by cyanide, in contrast with three-month-oldleaves in which nitrite reduction was almost completely inhibited.Thus it appears that in very young citrus leaves most of thenitrite reduction is non-enzymatic. 1 Contribution from The Volcani Center, Agricultural ResearchOrganization, P. O. B. 6, Bet Dagan, Israel. Series 1972.........2256AE. (Received November 28, 1972; )  相似文献   

20.
In vitro inactivation of Neurospora crassa nitrite reductase (NAD(P)H: nitrite oxidoreductase, EC 1.6.6.4) can be obtained by preincubation of the enzyme with reduced pyridine nucleotide plus FAD. The presence of nitrite or hydroxylamine, electron acceptors for the N. crassa nitrite reductase, or cyanide, sulfite or arsenite, competitive inhibitors with respect to nitrite of this enzyme, protects the enzyme against this inactivation. Anaerobic experiments reveal that oxygen is required in order to obtain complete inactivation of nitrite reductase by preincubation with reduced pyridine nucleotide plus FAD. Also, inactivation is prevented if catalase is included in the preincubation mixture. The presence of hydrogen peroxide in the preincubation mixture increases the sensitivity of nitrite reductase to the in vitro FAD-dependent NAD(P)H inactivation. Neither electron acceptors, competitive inhibitors nor catalase, agents which protect the enzyme against the FAD-dependent NAD(P)H inactivation, can reverse this process once it has occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号