首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
The control of glucagon secretion by pancreatic alpha-cells is poorly understood, largely because of the difficulty to recognize living alpha-cells. We describe a new mouse model, referred to as GluCre-ROSA26EYFP (or GYY), allowing easy alpha-cell identification because of specific expression of EYFP. GYY mice displayed normal glycemic control during a fasting/refeeding test or intraperitoneal insulin injection. Glucagon secretion by isolated islets was normally inhibited by glucose and stimulated by adrenaline. [Ca(2+)](c) responses to arginine, adrenaline, diazoxide and tolbutamide, were similar in GYY and control mice. Hence, this new mouse model is a reliable and powerful tool to specifically study alpha-cells.  相似文献   

2.
Glucagon secreted from pancreatic alpha-cells plays a critical role in glycemia, mainly by hepatic glucose mobilization. In diabetic patients, an impaired control of glucagon release can worsen glucose homeostasis. Despite its importance, the mechanisms that regulate its secretion are still poorly understood. Since alpha-cells are particularly sensitive to neural and paracrine factors, in this report we studied the role of purinergic receptors and extracellular ATP, which can be released from nerve terminals and beta-cell secretory granules. Using immunocytochemistry, we identified in alpha-cells the P2 receptor subtype P2Y1, as well as the P1 receptors A1 and A2A. In contrast, only P2Y1 and A1 receptors were localized in beta-cells. To analyze the role of purinergic receptors in alpha-cell function, we studied their participation in Ca2+ signaling. At low glucose concentrations, mouse alpha-cells exhibited the characteristic oscillatory Ca2+ signals that lead to secretion. Application of ATP (1-10 microM) abolished these oscillations or reduced their frequency in alpha-cells within intact islets and isolated in culture. ATPgammaS, a nonhydrolyzable ATP derivative, indicated that the ATP effect was mainly direct rather than through ATP-hydrolytic products. Additionally, adenosine (1-10 microM) was also found to reduce Ca2+ signals. ATP-mediated inhibition of Ca2+ signaling was accompanied by a decrease in glucagon release from intact islets in contrast to the adenosine effect. Using pharmacological agonists, we found that only P2Y1 and A2A were likely involved in the inhibitory effect on Ca2+ signaling. All these findings indicate that extracellular ATP and purinergic stimulation are effective regulators of the alpha-cell function.  相似文献   

3.
Capacitance measurements were used to investigate the molecular mechanisms by which imidazoline compounds inhibit glucagon release in rat pancreatic alpha-cells. The imidazoline compound phentolamine reversibly decreased depolarization-evoked exocytosis >80% without affecting the whole-cell Ca(2+) current. During intracellular application through the recording pipette, phentolamine produced a concentration-dependent decrease in the rate of exocytosis (IC(50) = 9.7 microm). Another imidazoline compound, RX871024, exhibited similar effects on exocytosis (IC(50) = 13 microm). These actions were dependent on activation of pertussis toxin-sensitive G(i2) proteins but were not associated with stimulation of ATP-sensitive K(+) channels or adenylate cyclase activity. The inhibitory effect of phentolamine on exocytosis resulted from activation of the protein phosphatase calcineurin and was abolished by cyclosporin A and deltamethrin. Exocytosis was not affected by intracellular application of specific alpha(2), I(1), and I(2) ligands. Phentolamine reduced glucagon release (IC(50) = 1.2 microm) from intact islets by 40%, an effect abolished by pertussis toxin, cyclosporin A, and deltamethrin. These data suggest that imidazoline compounds inhibit glucagon secretion via G(i2)-dependent activation of calcineurin in the pancreatic alpha-cell. The imidazoline binding site is likely to be localized intracellularly and probably closely associated with the secretory granules.  相似文献   

4.
5.
Glucagon-like peptide-1 (GLP-1) is a potent incretin hormone currently under investigation for use as a novel therapeutic agent in the treatment of type 2 diabetes. One of several therapeutically important biological actions of GLP-1 in type 2 diabetic subjects is ability to induce strong suppression of glucagon secretion. The glucagonostatic action of GLP-1 results from its interaction with a specific G-protein coupled receptor resulting in the activation of adenylate cyclase and an increase in cAMP generation. In the pancreatic alpha-cell, cAMP, via activation of protein kinase A, interacts with a plethora of signal transduction processes including ion-channel activity and exocytosis of the glucagon-containing granules. In this short review, we will focus on recent advances in our understanding on the cellular mechanisms proposed to underlie the glucagonotropic action of GLP-1 and attempt to incorporate this knowledge into a working model for the control of glucagon secretion. Studies on the effects of GLP-1 on glucagon secretion are relevant to the pathogenesis of type 2 diabetes due to the likely contribution of hyperglucagonemia to impaired glucose tolerance in type 2 diabetes.  相似文献   

6.
7.
Long-term exposure to fatty acids impairs beta-cell function in type 2 diabetes, but little is known about the chronic effects of fatty acids on alpha-cells. We therefore studied the prolonged impact of palmitate on alpha-cell function and on the expression of genes related to fuel metabolism. We also investigated whether the antihyperglycemic agent stevioside was able to counteract these effects of palmitate. Clonal alpha-TC1-6 cells were cultured with palmitate in the presence or absence of stevioside. After 72 h, we evaluated glucagon secretion, glucagon content, triglyceride (TG) content, and changes in gene expression. Glucagon secretion was dose-dependently increased after 72-h culture, with palmitate at concentrations >or=0.25 mM (P< 0.05). Palmitate (0.5 mM) enhanced TG content of alpha-cells by 73% (P< 0.01). Interestingly, stevioside (10(-8) and 10(-6) M) reduced palmitate-stimulated glucagon release by 22 and 45%, respectively (P< 0.01). There was no significant change in glucagon content after 72-h culture with palmitate and/or stevioside. Palmitate increased carnitine palmitoyltransferase I (CPT I) mRNA level, whereas stevioside enhanced CPT I, peroxisome proliferator-activated receptor-gamma, and stearoyl-CoA desaturase gene expressions in the presence of palmitate (P<0.05). In conclusion, long-term exposure to elevated fatty acids leads to a hypersecretion of glucagon and an accumulation of TG content in clonal alpha-TC1-6 cells. Stevioside was able to counteract the alpha-cell hypersecretion caused by palmitate and enhanced the expression of genes involved in fatty acid metabolism. This indicates that stevioside may be a promising antidiabetic agent in treatment of type 2 diabetes.  相似文献   

8.
There are three isoforms of arachidonate 12-lipoxygenase in mammals: platelet, leukocyte, and epidermal types. We found in this study that the leukocyte-type enzyme was present in rat pineal gland, lung, spleen, aorta, adrenal gland, spinal cord, and pancreas, as assessed by RT-PCR. Immunohistochemical analysis showed that the enzyme was localized in macrophages in lung and spleen, alpha-cells of pancreatic islet, zona glomerulosa cells of adrenal cortex, and neuronal cells of spinal cord and superior cervical ganglion. The presence of the 12-lipoxygenase in pancreatic alpha-cells was confirmed by glucagon staining in a consecutive section. We overexpressed the leukocyte-type 12-lipoxygenase cDNA in a glucagon-secreting alphaTC clone 6 cell line that had been established from a transgenic mouse. Glucagon secretion was stimulated by approximately twofold in the 12-lipoxygenase-expressing cells compared to the mock-transfected and original cells. The results suggest that the 12-lipoxygenase of the leukocyte type augments glucagon secretion from pancreatic islets.  相似文献   

9.
Glucagon, secreted from pancreatic islet alpha cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring beta cells, or to an intrinsic glucose sensing by the alpha cells themselves. We examined hormone secretion and Ca(2+) responses of alpha and beta cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn(2+) signalling was blocked, but was reversed by low concentrations (1-20 muM) of the ATP-sensitive K(+) (KATP) channel opener diazoxide, which had no effect on insulin release or beta cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 muM). Higher diazoxide concentrations (>/=30 muM) decreased glucagon and insulin secretion, and alpha- and beta-cell Ca(2+) responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 muM) stimulated glucagon secretion, whereas high concentrations (>10 muM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na(+) (TTX) and N-type Ca(2+) channels (omega-conotoxin), but not L-type Ca(2+) channels (nifedipine), prevented glucagon secretion. Both the N-type Ca(2+) channels and alpha-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an alpha-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.  相似文献   

10.
Glucose homeostasis is regulated primarily by the opposing actions of insulin and glucagon, hormones that are secreted by pancreatic islets from beta-cells and alpha-cells, respectively. Insulin secretion is increased in response to elevated blood glucose to maintain normoglycemia by stimulating glucose transport in muscle and adipocytes and reducing glucose production by inhibiting gluconeogenesis in the liver. Whereas glucagon secretion is suppressed by hyperglycemia, it is stimulated during hypoglycemia, promoting hepatic glucose production and ultimately raising blood glucose levels. Diabetic hyperglycemia occurs as the result of insufficient insulin secretion from the beta-cells and/or lack of insulin action due to peripheral insulin resistance. Remarkably, excessive secretion of glucagon from the alpha-cells is also a major contributor to the development of diabetic hyperglycemia. Insulin is a physiological suppressor of glucagon secretion; however, at the cellular and molecular levels, how intraislet insulin exerts its suppressive effect on the alpha-cells is not very clear. Although the inhibitory effect of insulin on glucagon gene expression is an important means to regulate glucagon secretion, recent studies suggest that the underlying mechanisms of the intraislet insulin on suppression of glucagon secretion involve the modulation of K(ATP) channel activity and the activation of the GABA-GABA(A) receptor system. Nevertheless, regulation of glucagon secretion is multifactorial and yet to be fully understood.  相似文献   

11.
We have previously shown that cAMP-binding protein cAMP-guanidine nucleotide exchange factor II (GEFII) (or Epac2) interacting with Rim2 is involved in cAMP-dependent, protein kinase A-independent exocytosis in pancreatic beta-cells. The action of the cAMP-GEFII.Rim2 complex requires both intracellular cAMP and Ca(2+). Although Rim2 has C(2) domains, its role as a Ca(2+) sensor has remained unclear. In the present investigation, we have discovered that Piccolo, a CAZ (cytoskeletal matrix associated with the active zone) protein in neurons that is structurally related to Rim2, also binds to cAMP-GEFII and that it forms both homodimer and heterodimer with Rim2 in a Ca(2+)-dependent manner, whereas Rim2 alone does not form the homodimer. The association of Piccolo.Rim2 heterodimerization is stronger than Piccolo.Piccolo homodimerization. Treatment of pancreatic islets with antisense oligodeoxynucleotides against Piccolo inhibits insulin secretion induced by cAMP analog 8-bromo-cyclic AMP plus high glucose stimulation. These results suggest that Piccolo serves as a Ca(2+) sensor in exocytosis in pancreatic beta-cells and that the formation of a cAMP-GEFII.Rim2.Piccolo complex is important in cAMP-induced insulin secretion. In addition, this study suggests that CAZ proteins similar to those in neurons are also function in pancreatic beta-cells.  相似文献   

12.
The insulin receptor (IR) and its signaling appear to be essential for insulin secretion from pancreatic beta-cells. However, much less is known about the role of the IR in alpha-cells. To assess the role of the IR in glucagon and insulin secretion, we engineered adeno-viruses for high efficiency small interference RNA (siRNA)-IR expression in isolated mouse pancreatic islets and lentiviruses for siRNA-IR expression in pancreatic alpha- and beta-cell lines (alpha-TC6 and MIN6) with specific, long term stable IR knockdown. Western blot analysis showed that these strategies resulted in 60-80% reduction of IR protein in islets and alpha- and beta-cell lines. Cell growth was reduced by 35-50% in alpha-TC and MIN6 cells stably expressing siRNA-IR, respectively. Importantly, glucagon secretion, in response to glucose (25 to 2.8 mm), was completely abolished in islets expressing siRNA-IR, whereas secretion increased 1.7-fold in islets expressing control siRNA. In contrast, there was no difference in glucose-stimulated insulin secretion when comparing siRNA-IR and siRNA control, with both groups showing a 1.7-fold increase. Islet glucagon and insulin content were also unaffected by IR knockdown. To further explore the role of the IR, siRNA-IR was stably expressed in pancreatic cell lines, which dramatically suppressed glucose-regulated glucagon secretion in alpha-TC6 cells (3.4-fold) but did not affect GSIS in MIN6 cells. Defects in siRNA-IR-expressing alpha-cells were associated with an alteration in the activity of Akt and p70S6K where insulin-induced phosphorylation of protein kinase B/AKt was greatly reduced while p70S6K activation was enhanced, suggesting that the related pathways play important roles in alpha cell function. This study provides direct evidence that appropriate expression of the IR in alpha-cells is required for glucose-dependent glucagon secretion.  相似文献   

13.
Clonidine-displacing substance (CDS) is a potent stimulator of insulin release from pancreatic beta-cells and has been suggested to constitute the endogenous ligand for the islet imidazoline-binding site. Here we have explored the effects of CDS on glucagon release from mouse pancreatic alpha-cells. CDS (5 U/ml) produced a 35% inhibition (P < 0.05) of glucagon release from intact islets. This effect was dose-dependent and half-maximal inhibition by CDS was observed at 0.03 U/ml. Inhibition of glucagon release was not associated with a change in whole-cell ATP-sensitive K(+)-channel activity in single alpha-cells. However, during intracellular application through the recording pipette, CDS produced a 36% (P < 0.05) decrease in the rate of exocytosis, measured as changes in cell capacitance. The inhibitory effect of CDS on exocytosis resulted from activation of the protein phosphatase calcineurin and was abolished by cyclosporin A. These data provide further evidence for a role of CDS as an endogenous ligand controlling islet hormone secretion.  相似文献   

14.
Pancreatic islets contain ionotropic glutamate receptors that can modulate hormone secretion. The purpose of this study was to determine whether islets express functional group III metabotropic glutamate (mGlu) receptors. RT-PCR analysis showed that rat islets express the mGlu8 receptor subtype. mGlu8 receptor immunoreactivity was primarily displayed by glucagon-secreting alpha-cells and intrapancreatic neurons. By demonstrating the immunoreactivities of both glutamate and the vesicular glutamate transporter 2 (VGLUT2) in these cells, we established that alpha-cells express a glutamatergic phenotype. VGLUT2 was concentrated in the secretory granules of islet cells, suggesting that glutamate might play a role in the regulation of glucagon processing. The expression of mGlu8 by glutamatergic cells also suggests that mGlu8 may function as an autoreceptor to regulate glutamate release. Pancreatic group III mGlu receptors are functional because mGlu8 receptor agonists inhibited glucagon release and forskolin-induced accumulation of cAMP in isolated islets, and (R,S)-cyclopropyl-4-phosphonophenylglycine, a group III mGlu receptor antagonist, reduced these effects. Because excess glucagon secretion causes postprandial hyperglycemia in patients with type 2 diabetes, group III mGlu receptor agonists could be of value in the treatment of these patients.  相似文献   

15.
The expression of K+-Cl- cotransporters (KCC) was examined in pancreatic islet cells. mRNA for KCC1, KCC3a, KCC3b and KCC4 were identified by RT-PCR in islets isolated from rat pancreas. In immunocytochemical studies, an antibody specific for KCC1 and KCC4 revealed the expression of KCC protein in alpha-cells, but not pancreatic beta-cells nor delta-cells. A second antibody which does not discriminate among KCC isoforms identified KCC expression in both alpha-cell and beta-cells. Exposure of isolated alpha-cells to hypotonic solutions caused cell swelling was followed by a regulatory volume decrease (RVD). The RVD was blocked by 10 microM [dihydroindenyl-oxy] alkanoic acid (DIOA; a KCC inhibitor). DIOA was without effect on the RVD in beta-cells. NEM (0.2 mM), a KCC activator, caused a significant decrease of alpha-cell volume, which was completely inhibited by DIOA. By contrast, NEM had no effects on beta-cell volume. In conclusion, KCCs are expressed in pancreatic alpha-cells and beta-cells. However, they make a significant contribution to volume homeostasis only in alpha-cells.  相似文献   

16.
M Ikeuchi  D L Cook 《Life sciences》1984,35(6):685-691
We have investigated the effects of glucagon and forskolin upon pancreatic islet cell electrical activity using intracellular recordings from single mouse islets. Glucagon (0.1-2.0 microM) and forskolin (0.5-5.0 microM), both adenylate cyclase activators, potentiated glucose (200 mg/dl)-induced electrical activity. In the steady-state, islet cells have cyclic electrical activity with periodically recurring "plateau" depolarizations (with superimposed Ca++ action potentials) separated by silent hyperpolarizations. Both glucagon and forskolin mimicked glucose stimulation by increasing the fraction of each cycle spent in the plateau phase (the "plateau fraction"). Unlike glucose, however, glucagon and forskolin increased, rather than decreased, the overall frequency of plateaus, suggesting that plateau frequency is not tightly linked to changes of plateau fraction. This dissociation was also apparent during the onset of drug action. Plateau fraction increased immediately (within one minute), fell to a nadir and then rose to a new steady state level. Plateau frequency, however, rose slowly and monotonically to a new level. Following drug withdrawal plateau fraction returned to control levels several minutes before plateau fraction. From these results it was concluded that cAMP has two effects upon islet cell electrical activity: one is to increase plateau fraction possibly by stimulating glucose-dependent process, which results in increasing in Ca++ influx, and the other to increase plateau frequency possibly by reducing intracellular Ca++ buffering.  相似文献   

17.
18.
Exocytosis is evoked by intracellular signals, including Ca2+ and protein kinases. We determined how such signals interact to promote exocytosis in exocrine pancreatic duct epithelial cells (PDECs). Exocytosis, detected using carbon-fiber microamperometry, was stimulated by [Ca2+]i increases induced either through Ca2+ influx using ionomycin or by activation of P2Y2 or protease-activated receptor 2 receptors. In each case, the exocytosis was strongly potentiated when cyclic AMP (cAMP) was elevated either by activating adenylyl cyclase with forskolin or by activating the endogenous vasoactive intestinal peptide receptor. This potentiation was completely inhibited by H-89 and partially blocked by Rp-8-Br-cAMPS, inhibitors of protein kinase A. Optical monitoring of fluorescently labeled secretory granules showed slow migration toward the plasma membrane during Ca2+ elevations. Neither this Ca2+-dependent granule movement nor the number of granules found near the plasma membrane were detectably changed by raising cAMP, suggesting that cAMP potentiates Ca2+-dependent exocytosis at a later stage. A kinetic model was made of the exocytosis stimulated by UTP, trypsin, and Ca2+ ionophores with and without cAMP increase. In the model, without a cAMP rise, receptor activation stimulates exocytosis both by Ca2+ elevation and by the action of another messenger(s). With cAMP elevation the docking/priming step for secretory granules was accelerated, augmenting the releasable granule pool size, and the Ca2+ sensitivity of the final fusion step was increased, augmenting the rate of exocytosis. Presumably both cAMP actions require cAMP-dependent phosphorylation of target proteins. cAMP-dependent potentiation of Ca2+-induced exocytosis has physiological implications for mucin secretion and, possibly, for membrane protein insertion in the pancreatic duct. In addition, mechanisms underlying this potentiation of slow exocytosis may also exist in other cell systems.  相似文献   

19.
The effects of infusion of glucosamine on immunoreactive glucagon (IRG) and insulin (IRI) secretion were studied in dogs and ducks. During systemic infusion of glucosamine, hyperglycemia developed and insulin secretion was inhibited in both species. An immediate and sustained elevation of peripheral IRG levels was induced in ducks but a transient rise, detectable only in the pancreatic vein blood, was provoked in dogs. Suppression of insulin release and stimulation of glucagon release may be mediated by the inhibition of glucose utilization in beta- and alpha-cells. The very prompt response of IRG in ducks may imply that glucosamine has a specific stimulating effect on the alpha-cells of ducks. Intrapancreatic administration of glucosamine in dogs, however, failed to elicit the rise of IRG, although insulin secretion was inhibited. Thus, it is suggested that the systemic administration of glucosamine in dogs may stimulate IRG secretion by some indirect effect. In one dog, however, a sustained rise of the pancreatic vein IRG was observed. Thus, the possibility cannot be ruled out that the difference in IRG response to glucosamine in dogs and ducks is quantitative rather than qualitative. Glucagon release by glucosamine may provide an additional factor to the hyperglycemic effect of glucosamine, in addition to its effect to suppress insulin release as well as its direct inhibitory effect on glucose utilization in tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号