首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmodium polymorphum n. sp. (Haemosporida, Plasmodiidae) was found in the skylark, Alauda arvensis (Passeriformes: Alaudidae), during autumnal migration in southern Italy. This organism is illustrated and described based on the morphology of its blood stages. The most distinctive feature of this malaria parasite is the clear preference of its blood stages (trophozoites, meronts, and gametocytes) for immature red blood cells, including erythroblasts. Based on preference of erythrocytic meronts for immature red blood cells, P. polymorphum is most similar to species of the subgenus Huffia . This parasite can be readily distinguished from all other bird malaria parasites, including Plasmodium ( Huffia ) spp., due to preferential development and maturation of its gametocytes in immature red blood cells, a unique character for avian Plasmodium spp. In addition, the margins of nuclei in blood stages of P. polymorphum are markedly smooth and distinct; this is also a distinct diagnostic feature of this parasite. Plasmodium polymorphum has been recorded only in the skylark; it is probably a rare parasite, whose host range and geographical distribution remain unclear. Microscopic examination detected a light infection of Plasmodium relictum (lineage GRW11, parasitemia of <0.01%) in the same sample with P. polymorphum ; the latter parasite clearly predominated (3.5% parasitemia). However, experienced researchers were unable to detect sequences of mitochondrial cytochrome b gene (cyt b ) of P. polymorphum from the microscopically positive sample by using published and newly designed primers for DNA amplification of avian Plasmodium spp. The light parasitemia of P. relictum was easily detectable using several polymerase chain reaction (PCR)-based assays, but P. polymorphum was undetectable in all applied assays. Quantitative PCR also showed the presence of light parasitemia (0.06%) of the lineage GRW11 in this sample. This supports the conclusion that the morphologically distinct parasite observed along with P. relictum and predominant in the sample is genetically dissimilar from the lineage GRW11 based on cyt b sequence. In samples with co-infections, general PCR protocols tend to favor the amplification of the parasite with the higher parasitemia or the amplification with the best matching sequence to the primers. Because the parasitemia of P. polymorphum was >50-fold higher than that of P. relictum and several different primers were tested, we suggest that the failure to amplify P. polymorphum is a more complex problem than why co-infections are commonly overlooked in PCR-based studies. We suggest possible explanations of these results and call for additional research on evolution of mitochondrial genome of hemosporidian parasites.  相似文献   

2.
Severe anemia is the earliest and a frequently fatal complication of Plasmodium falciparum infection. Here we describe Aotus infulatus as a primate model suitable to study this malaria complication. Both non-splenectomized and splenectomized monkeys receiving different inocula of P. falciparum FVO strain presented large (> 50%) decreases in hematocrit values during infection. Non-splenectomized animals were able to control parasite growth (parasitemia did not exceed 4%), but they had to be treated because of severe anemia. Three of 4 splenectomized monkeys did not control parasitemia and were treated, but developed severe anemia after treatment when presenting a negative blood film. Destruction of parasitized red blood cells alone cannot account for the degree of anemia. Non-splenectomized monkeys repeatedly infected with homologous parasites became rapidly and progressively resistant to reinfection and to the development of severe anemia. The data presented here point to A. infulatus as a suitable model for studying the pathogenesis of severe malarial infection.  相似文献   

3.
The two main agents of human malaria, Plasmodium vivax and Plasmodium falciparum, can induce severe anemia and provoke strong, complex immune reactions. Which dynamical behaviors of host immune and erythropoietic responses would foster control of infection, and which would lead to runaway parasitemia and/or severe anemia? To answer these questions, we developed differential equation models of interacting parasite and red blood cell (RBC) populations modulated by host immune and erythropoietic responses. The model immune responses incorporate both a rapidly responding innate component and a slower-responding, long-term antibody component, with several parasite developmental stages considered as targets for each type of immune response. We found that simulated infections with the highest parasitemia tended to be those with ineffective innate immunity even if antibodies were present. We also compared infections with dyserythropoiesis (reduced RBC production during infection) to those with compensatory erythropoiesis (boosted RBC production) or a fixed basal RBC production rate. Dyserythropoiesis tended to reduce parasitemia slightly but at a cost to the host of aggravating anemia. On the other hand, compensatory erythropoiesis tended to reduce the severity of anemia but with enhanced parasitemia if the innate response was ineffective. For both parasite species, sharp transitions between the schizont and the merozoite stages of development (i.e., with standard deviation in intra-RBC development time ≤2.4 h) were associated with lower parasitemia and less severe anemia. Thus tight synchronization in asexual parasite development might help control parasitemia. Finally, our simulations suggest that P. vivax can induce severe anemia as readily as P. falciparum for the same type of immune response, though P. vivax attacks a much smaller subset of RBCs. Since most P. vivax infections are nonlethal (if debilitating) clinically, this suggests that P. falciparum adaptations for countering or evading immune responses are more effective than those of P. vivax.  相似文献   

4.
In regions of high rates of malaria transmission, mosquitoes repeatedly transmit liver-tropic Plasmodium sporozoites to individuals who already have blood-stage parasitemia. This manifests itself in semi-immune children (who have been exposed since birth to Plasmodium infection and as such show low levels of peripheral parasitemia but can still be infected) older than 5 years of age by concurrent carriage of different parasite genotypes at low asymptomatic parasitemias. Superinfection presents an increased risk of hyperparasitemia and death in less immune individuals but counterintuitively is not frequently observed in the young. Here we show in a mouse model that ongoing blood-stage infections, above a minimum threshold, impair the growth of subsequently inoculated sporozoites such that they become growth arrested in liver hepatocytes and fail to develop into blood-stage parasites. Inhibition of the liver-stage infection is mediated by the host iron regulatory hormone hepcidin, whose synthesis we found to be stimulated by blood-stage parasites in a density-dependent manner. We mathematically modeled this phenomenon and show how density-dependent protection against liver-stage malaria can shape the epidemiological patterns of age-related risk and the complexity of malaria infections seen in young children. The interaction between these two Plasmodium stages and host iron metabolism has relevance for the global efforts to reduce malaria transmission and for evaluation of iron supplementation programs in malaria-endemic regions.  相似文献   

5.
A reticulocyte-binding protein complex of Plasmodium vivax merozoites.   总被引:7,自引:0,他引:7  
Plasmodium vivax merozoites primarily invade reticulocytes. The basis of this restricted host cell preference has been debated. Here we introduce two novel P. vivax proteins that comigrate on reducing SDS-polyacrylamide gels, colocalize at the apical pole of merozoites, and adhere specifically to reticulocytes. The genes encoding these proteins, P. vivax reticulocyte-binding proteins 1 and 2 (PvRBP-1 and PvRBP-2), have been cloned and analyzed. Homologous genes are evident in the closely related simian malaria parasite, P. cynomolgi, which also prefers to invade reticulocytes, but are not evident in the genome of another related simian malaria parasite, P. knowlesi, which invades all red blood cell subpopulations. Native PvRBP-1 is likely a transmembrane-anchored disulfide-linked protein, and along with PvRBP-2 may function as an adhesive protein complex. We propose that the RBPs of P. vivax, and homologous proteins of P. cynomolgi, function to target the reticulocyte subpopulation of red blood cells for invasion.  相似文献   

6.
Malaria is a parasitic disease that causes severe hemolytic anemia in Plasmodium-infected hosts, which results in the release and accumulation of oxidized heme (hemin). Although hemin impairs the establishment of Plasmodium immunity in vitro and in vivo, mice preconditioned with hemin develop lower parasitemia when challenged with Plasmodium chabaudi adami blood stage parasites. In order to understand the mechanism accounting for this resistance as well as the impact of hemin on eryptosis and plasma levels of scavenging hemopexin, red blood cells were labeled with biotin prior to hemin treatment and P. c. adami infection. This strategy allowed discriminating hemin-treated from de novo generated red blood cells and to follow the infection within these two populations of cells. Fluorescence microscopy analysis of biotinylated-red blood cells revealed increased P. c. adami red blood cells selectivity and a decreased permissibility of hemin-conditioned red blood cells for parasite invasion. These effects were also apparent in in vitro P. falciparum cultures using hemin-preconditioned human red blood cells. Interestingly, hemin did not alter the turnover of red blood cells nor their replenishment during in vivo infection. Our results assign a function for hemin as a protective agent against high parasitemia, and suggest that the hemolytic nature of blood stage human malaria may be beneficial for the infected host.  相似文献   

7.
Preferential invasion of malarial merozoites into young red blood cells   总被引:3,自引:0,他引:3  
B Mons 《Blood cells》1990,16(2-3):299-312
The preferential invasion of malarial merozoites into subpopulations of red blood cells (RBCs) in vivo and in vitro has been the subject of repeated discussions. In this paper, an attempt is made to summarize these discussions and to pinpoint the mechanism by which this preference could arise. The available data suggest that a relatively simple mechanism, related to the capability of the merozoite to rearrange the proteins of the cytoskeleton of the RBC may determine the invasion rate into mature versus very young RBCs (reticulocytes). There is no evidence for significant differences between mature RBCs and reticulocytes in the presence of membrane proteins which might play a role in receptor-ligand binding of merozoites to their host cell. Consequently, the concept of "reticulocyte preference" is left and the ability of penetrating both mature and immature RBCs, versus immature RBCs only, is given as an explanation for the presence of ringforms exclusively in reticulocytes as observed for several species of vivax-type malaria parasites. The possible consequences of preferential invasion for the infection (in vivo) and the culture (in vitro) of different plasmodial species are discussed.  相似文献   

8.
Insufficient circulating reticulocytes have been observed during severe malarial anaemia in both human and murine infection, and are often attributed to reduced production of red cell precursors. However, a number of Plasmodium species display a preference for invading reticulocytes rather than erythrocytes. Thus, the reduction in circulating reticulocyte numbers may arise as a result both of increased parasitization and lysis of reticulocytes, as well as decreased production. We have analysed both circulating reticulocyte numbers and the percentage of infected reticulocytes during murine Plasmodium berghei infection. We found a large reduction in circulating numbers when compared with an equivalent chemically induced anaemia. However, mathematical analysis of parasite and red cell numbers revealed the preference of P. berghei for reticulocytes to be approximately 150-fold over that for erythrocytes, leading to increased destruction of reticulocytes. Although erythropoietic suppression is evident during the first week of P. berghei infection, this preferential infection and destruction of reticulocytes is sufficient to mediate ongoing reduced levels of circulating reticulocytes during the latter stages of infection, following compensatory erythropoiesis in response to haemolytic anaemia.  相似文献   

9.
Plasmodium falciparum infections of the placenta remain a major medical challenge among pregnant women in sub-Saharan Africa. A number of factors influence the prevalence of placental malaria in pregnant women, including maternal age, gravidity, use of prophylaxis, nutrition, host genetics, and level of anti-parasite immunity, as well as parasite genetics and transmission rates [1]. Maternal anemia has been shown to be one of the major complications of placental malaria in sub-Saharan Africa. The mechanisms by which malaria causes anemia are fairly well understood. The pathophysiology of malaria-associated anemia is multifactorial. The most likely mechanisms include (i) hemolysis or the direct destruction of parasitized red blood cells that occurs both intravascularly and by sequestration in the microcirculation, mainly in the spleen; (ii) specific/nonspecific immune responses, whereby red cell survival is shortened; (iii) nonspecific, defective, red cell production, which depresses erythropoiesis, inhibits reticulocyte release, and prematurely destructs red cells during maturation in the bone marrow; and (iv) hypersplenism associated with a reduction in all three blood cell series, that is, causing not only anemia but also thrombocytopenia and leucopenia [2,3]. The relationship between maternal anemia with obstetric factors, however, is not fully understood, and, thus, evaluating the link between malaria, obstetric disorders, and maternal death has been recommended [4]. There have been efforts to quantify the contribution of malaria to maternal morbidity and mortality with the expectation that this would provide the evidence necessary to improve the effectiveness of advocacy to incorporate malaria prevention strategies in Safe Motherhood Programs [5,6]. The effects of placental malaria on maternal health can better be understood when considered in relation with various maternal parameters, including maternal age, parity, peripheral malaria infection, anemia, and HIV infection.  相似文献   

10.
Changes in blood cell parameters are already a well-known feature of malarial infections. To add to this information, the objective of this study was to investigate the varying effects that different levels of parasite density have on blood cell parameters. Patients diagnosed with malaria at Phobphra Hospital, Tak Province, Thailand between January 1st 2009 and January 1st 2012 were recruited as subjects for data collection. Blood cell parameters of 2,024 malaria-infected patients were evaluated and statistically analyzed. Neutrophil and platelet counts were significantly higher, however, RBC count was significantly lower in patients with P. falciparum infection compared to those with P. vivax infection (p<0.0001). Leukocyte counts were also significantly higher in patients with high parasitemia compared to those with low and moderate parasitemia. In terms of differential leukocyte count, neutrophil count was significantly higher in patients with high parasitemia compared to those with low and moderate parasitemia (p<0.0001). On the other hand, both lymphocyte and monocyte counts were significantly lower in patients with high parasitemia (p<0.0001). RBC count and Hb concentration, as well as platelet count were also significantly reduced (p<0.05) and (p<0.0001), respectively. To summarize, patients infected with different malaria parasites exhibited important distinctive hematological parameters, with neutrophil and eosinophil counts being the two hematological parameters most affected. In addition, patients infected with different malarial densities also exhibited important changes in leukocyte count, platelet count and hemoglobin concentration during the infection. These findings offer the opportunity to recognize and diagnose malaria related anemia, help support the treatment thereof, as well as relieve symptoms of severe malaria in endemic regions.  相似文献   

11.
SYNOPSIS. Reticulocytosis, stimulated by the destruction of red blood cells by phenylhydrazine, altered the course of infection of both Plasmodium chabaudi and P. berghei in the mouse. P. chabaudi, lacking a preference for reticulocytes, was adversely affected when young cells were present in abundance. Parasitemias diminished and most of the animals survived the otherwise fatal infection. P. berghei preferentially invaded reticulocytes to the extent that the parasitemia became contained largely in the reticulocyte population. This was accompanied by a delay in time to death.  相似文献   

12.
Plasmodium vivax is the most widely distributed human malaria parasite. Despite its importance, both clinical research and basic research have been hampered by lack of a convenient in vitro culture system, in part due to the parasite's infection preference of reticulocytes rather than mature erythrocytes. The use of reticulocyte-producing hematopoietic stem cell culture has been proposed for the maintenance of the parasite, but good numbers of reticulocytes and P. vivax parasites sufficient for practical use in research have been difficult to produce from this system. Here, we report an improved method of hematopoietic stem cell culture for P. vivax infection, which requires less time and produces higher or equivalent percentage of reticulocytes than previously reported systems. Reticulocytes were cultured from cryopreserved erythroblasts that were frozen after 8 day-cultivation of purified CD34 + cells from human umbilical cord blood. This method of production allowed the recovery of reticulocytes in a shorter time than with continuous stem cell culture. We obtained a relatively high percentage of peak reticulocyte production by using co-cultivation with a mouse stromal cell line. Using P. vivax mature stage parasites obtained from infected Aotus monkeys, we observed substantial numbers (up to 0.8% of the total number of the cells) of newly invaded reticulocytes 24 h after initial cultivation. The addition of fresh reticulocytes after 48 h culture, however, did not result in significant increase of second cycle reticulocyte invasion. Assays of invasion inhibition with specific antibodies were successful with this system, demonstrating potential for study of biological processes as well as the conditions necessary for long-term maintenance of P. vivax in vitro.  相似文献   

13.
Plasmodium vivax is responsible for most of the malaria infections outside Africa and is currently the predominant malaria parasite in countries under elimination programs. P. vivax preferentially enters young red cells called reticulocytes. Advances in understanding the molecular and cellular mechanisms of entry are hampered by the inability to grow large numbers of P. vivax parasites in a long‐term in vitro culture. Recent progress in understanding the biology of the P. vivax Reticulocyte Binding Protein (PvRBPs) family of invasion ligands has led to the identification of a new invasion pathway into reticulocytes, an understanding of their structural architecture and PvRBPs as targets of the protective immune response to P. vivax infection. This review summarises current knowledge on the role of reticulocytes in P. vivax infection, the function of the PvRBP family of proteins in generating an immune response in human populations, and the characterization of anti‐PvRBP antibodies in blocking parasite invasion.  相似文献   

14.
Hyperbleeding of mice 1 day before and 1 day after infection with Plasmodium berghei resulted in a more aggravated infection. Parasitemia rose significantly faster, but the mean survival time of these mice was not significantly different from control mice. At Day 5 of infection, parasites were almost exclusively in reticulocytes in contrast to control infections in which parasites were found in oxyphilic erythrocytes at Day 5 after infection. Purified parasitized reticulocytes taken from hyperbled mice at Day 5 after infection contained more young developmental parasite stages than purified parasitized oxyphilic erythrocytes taken from normal mice at Day 5 to 7 after infection. Parasitized reticulocytes were more readily opsonized by antibodies from immune serum when compared to parasitized oxyphilic red blood cells and when used to stimulate immune spleen cells the former were better stimulator cells than the latter. Results suggest either that parasitized reticulocytes are more immunogenic then parasitized oxyphilic red blood cells or that suspensions of parasitized reticulocytes contain more immunogenic parasite stages than suspensions of parasitized oxyphilic red blood cells.  相似文献   

15.
The accurate diagnosis of malaria starts with clinical suspicion, confirmed by reliable laboratory results. A hospital-based study, described here, was carried out in a malaria mesoendemic area in eastern Sudan, where the inhabitants are semi-immune to malaria, and the fever threshold of parasitemia is not above the detection level of microscopy. Thus, we hypothesized that patients with symptoms highly suggestive of cerebral malaria (CM), but aparasitemic by microscopy, may have submicroscopic parasitemia. Patients in our malaria clinic were screened by microscopy, and 120 individuals were selected for the study, including febrile patients with and without microscopically detectable parasitemia, and apparently healthy individuals. In the two former groups there were patients with severe anemia and deep coma. Polymerase chain reaction (PCR) for parasite detection and ELISA tests for measuring serum antibody levels were carried out on all blood samples. A majority of the febrile patients who were parasite negative by microscopy showed the presence of a Plasmodium falciparum infection by PCR. The occurrence of P. falciparum infection with parasitemia below the detection level of microscopy was recognized more often in patients with CM symptoms than in those with severe malarial anemia (SMA), and in older rather than younger patients. Patients clinically suspected (CS) of having CM ((CS)CM) mostly were infected with a single clone, and a large proportion of them acquired antibodies (Abs) against merozoite surface protein (MSP) antigens (Ags). The therapeutic response to quinine treatment was comparable between patients with (CS)CM and CM. In conclusion, uniquely in this setting, CM can be associated with sub-patent parasitemia; thus, a diagnostic tool more sensitive than microscopy is needed.  相似文献   

16.
Avian vitellogenin has been studied as an iron carrier for hemoglobin synthesis by reticulocytes. The Fe-vitellogenin uptake by the immature red cells is progressive with time, following an unspecific iron uptake process. The iron uptake from Fe-vitellogenin was in proportion to the immature red cells present and the radioactive iron was found in the hemoglobin synthesized by these cells. These results open up the possibility of assigning a secondary role to the Fe-vitellogenin in the avian erythropoiesis, added to the classical iron transport function for egg production.  相似文献   

17.
Babesia microti, a protozoan parasite of mammalian erythrocytes was obtained from the blood of an infected human and maintained in golden hamsters, in which a parasitemia of 70% was obtained regularly. The hamsters' response—a subacute, hemolytic anemia—was studied with regard to oxygen affinity and red cell organic phosphate content. In addition, the reduced glutathione status of infected erythrocytes was observed because of the possible importance of this metabolite to parasite growth and red cell integrity. Infected animals developed a severe anemia with reticulocytosis; there occurred a 4-mm decrease in whole blood oxygen affinity without any change in erythrocytes' 2,3-diphosphoglycerate levels. The glutathione content of the infected animals' erythrocytes increased twofold during the course of the infection. In uninfected animals, in which anemia and reticulocytosis had been produced by bleeding, all changes seen in infected animals were reproduced. It was concluded that the changes in the infected animals were due to the anemia and reticulocytosis alone, and that the parasite played no role in these changes apart from being a cause of anemia and reticulocytosis.  相似文献   

18.
Quantification of parasite density is an important component in the diagnosis of malaria infection. The accuracy of this estimation varies according to the method used. The aim of this study was to assess the agreement between the parasite density values obtained with the assumed value of 8,000 cells/μL and the automated WBC count. Moreover, the same comparative analysis was carried out for other assumed values of WBCs. The study was carried out in Brazil with 403 malaria patients who were infected in different endemic areas of the Brazilian Amazon. The use of a fixed WBC count of 8,000 cells/μL to quantify parasite density in malaria patients led to overestimated parasitemia and resulted in low reliability when compared to the automated WBC count. Assumed values ranging between 5,000 and 6,000 cells/μL, and 5,500 cells/μL in particular, showed higher reliability and more similar values of parasite density when compared between the 2 methods. The findings show that assumed WBC count of 5,500 cells/μL could lead to a more accurate estimation of parasite density for malaria patients in this endemic region.  相似文献   

19.
It is generally accepted that Plasmodium vivax, the most widely distributed human malaria, does not cytoadhere in the deep capillaries of inner organs and thus this malaria parasite must have evolved splenic evasion mechanism in addition to sequestration. The spleen is a uniquely adapted lymphoid organ whose central function is the selective clearance of cell and other particles from the blood, and microbes including malaria. Splenomegaly is a hallmark of malaria and no other disease seems to exacerbate this organ as this disease does. Besides this major selective clearance function however, the spleen is also an erythropoietic organ which, under stress conditions, can be responsible for close to 40% of the RBC populations. Data obtained in experimental infections of human patients with P. vivax showed that anaemia is associated with acute and chronic infections and it has been postulated that the continued parasitemia might have been sufficient to infect and destroy most circulating reticulocytes. We review here the basis of our current knowledge of variant genes in P. vivax and the structure and function of the spleen during malaria. Based on this data, we propose that P. vivax specifically adhere to barrier cells in the human spleen allowing the parasite to escape spleen-clearance while favouring the release of merozoites in an environment where reticulocytes, the predominant, if not exclusive, host cell of P. vivax, are stored before their release into circulation to compensate for the anaemia associated with vivax malaria.  相似文献   

20.
Increased levels of several human ubiquitin ligases, including ring finger protein 123 (RNF123), in red blood cells with Plasmodium falciparum infection, have been reported. RNF123 is an E3 ubiquitin ligase that is highly expressed in erythroid cells. However, the function of the RNF123 gene and the relationship between the RNF123 gene and malarial parasite has not been clarified in vivo. In this study, we generated RNF123-deficient mice using the CRISPR/Cas9 system, and analyzed malaria susceptibility and erythrocyte morphology. The levels of parasitemia 5 days post-infection and mortality 21 days post-infection with the lethal type of rodent malaria (Plasmodium yoelii 17XL) in RNF123-deficient mice was significantly lower than that in wild-type mice. In contrast, red blood cell morphology in RNF123-deficient mice was almost normal. These results suggest that erythrocytic RNF123 plays a role in susceptibility to rodent malaria infection, but does not play a role in erythrocyte morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号