首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
External control of a genetic regulatory network is used for the purpose of avoiding undesirable states, such as those associated with a disease. To date, intervention has mainly focused on the external control of probabilistic Boolean networks via the associated discrete-time discrete-space Markov processes. Implementation of an intervention policy derived for probabilistic Boolean networks requires nearly continuous observation of the underlying biological system since precise application requires the observation of all transitions. In medical applications, as in many engineering problems, the process is sampled at discrete time intervals and a decision to intervene or not must be made at each sample point. In this work, sampling-rate-dependent probabilistic Boolean network is proposed as an extension of probabilistic Boolean network. The proposed framework is capable of capturing the sampling rate of the underlying system.  相似文献   

2.
For years, we have been building models of gene regulatory networks, where recent advances in molecular biology shed some light on new structural and dynamical properties of such highly complex systems. In this work, we propose a novel timing of updates in random and scale-free Boolean networks, inspired by recent findings in molecular biology. This update sequence is neither fully synchronous nor asynchronous, but rather takes into account the sequence in which genes affect each other. We have used both Kauffman's original model and Aldana's extension, which takes into account the structural properties about known parts of actual GRNs, where the degree distribution is right-skewed and long-tailed. The computer simulations of the dynamics of the new model compare favorably to the original ones and show biologically plausible results both in terms of attractors number and length. We have complemented this study with a complete analysis of our systems’ stability under transient perturbations, which is one of biological networks defining attribute. Results are encouraging, as our model shows comparable and usually even better behavior than preceding ones without loosing Boolean networks attractive simplicity.  相似文献   

3.
Probabilistic Boolean networks (PBNs) are extensions of Boolean networks (BNs), and both have been widely used to model biological systems. In this paper, we study the long-range correlations of PBNs based on their corresponding Markov chains. PBN states are quantified by the deviation of their steady-state distributions. The results demonstrate that, compared with BNs, PBNs can exhibit these dynamics over a wider and higher noise range. In addition, the constituent BNs significantly impact the generation of 1/f dynamics of PBNs, and PBNs with homogeneous steady-state distributions tend to sustain the 1/f dynamics over a wider noise range.  相似文献   

4.
概率布尔型基因调节网络的分解方法研究   总被引:1,自引:1,他引:1  
基于Iyla Shumlevich等提出的概率布尔型网络(PBN)模型,计算网络中任意两基因之间量化了的相互影响,给出相应的有向带权图模型。通过对模型的标准化分析,找出关键节点,以各关键节点为中心,对网络划分,通过计算子网络间交互信息,确定各子网络边界,以达到对网络的最优分解。  相似文献   

5.
6.
One of the major challenges in complex systems biology is that of providing a general theoretical framework to describe the phenomena involved in cell differentiation, i.e., the process whereby stem cells, which can develop into different types, become progressively more specialized. The aim of this study is to briefly review a dynamical model of cell differentiation which is able to cover a broad spectrum of experimentally observed phenomena and to present some novel results.  相似文献   

7.
An evolutionary model of genetic regulatory networks is developed, based on a model of network encoding and dynamics called the Artificial Genome (AG). This model derives a number of specific genes and their interactions from a string of (initially random) bases in an idealized manner analogous to that employed by natural DNA. The gene expression dynamics are determined by updating the gene network as if it were a simple Boolean network. The generic behaviour of the AG model is investigated in detail. In particular, we explore the characteristic network topologies generated by the model, their dynamical behaviours, and the typical variance of network connectivities and network structures. These properties are demonstrated to agree with a probabilistic analysis of the model, and the typical network structures generated by the model are shown to lie between those of random networks and scale-free networks in terms of their degree distribution. Evolutionary processes are simulated using a genetic algorithm, with selection acting on a range of properties from gene number and degree of connectivity through periodic behaviour to specific patterns of gene expression. The evolvability of increasingly complex patterns of gene expression is examined in detail. When a degree of redundancy is introduced, the average number of generations required to evolve given targets is reduced, but limits on evolution of complex gene expression patterns remain. In addition, cyclic gene expression patterns with periods that are multiples of shorter expression patterns are shown to be inherently easier to evolve than others. Constraints imposed by the template-matching nature of the AG model generate similar biases towards such expression patterns in networks in initial populations, in addition to the somewhat scale-free nature of these networks. The significance of these results on current understanding of biological evolution is discussed.  相似文献   

8.
9.
10.
Perfect knowledge of the underlying state transition probabilities is necessary for designing an optimal intervention strategy for a given Markovian genetic regulatory network. However, in many practical situations, the complex nature of the network and/or identification costs limit the availability of such perfect knowledge. To address this difficulty, we propose to take a Bayesian approach and represent the system of interest as an uncertainty class of several models, each assigned some probability, which reflects our prior knowledge about the system. We define the objective function to be the expected cost relative to the probability distribution over the uncertainty class and formulate an optimal Bayesian robust intervention policy minimizing this cost function. The resulting policy may not be optimal for a fixed element within the uncertainty class, but it is optimal when averaged across the uncertainly class. Furthermore, starting from a prior probability distribution over the uncertainty class and collecting samples from the process over time, one can update the prior distribution to a posterior and find the corresponding optimal Bayesian robust policy relative to the posterior distribution. Therefore, the optimal intervention policy is essentially nonstationary and adaptive.  相似文献   

11.
Methods for modeling cellular regulatory networks as diverse as differential equations and Boolean networks co-exist, however, without much closer correspondence to each other. With the example system of the fission yeast cell cycle control network, we here discuss these two approaches with respect to each other. We find that a Boolean network model can be formulated as a specific coarse-grained limit of the more detailed differential equations model for this system. This demonstrates the mathematical foundation on which Boolean networks can be applied to biological regulatory networks in a controlled way.  相似文献   

12.
Finding control strategies of cells is a challenging and important problem in the post-genomic era. This paper considers theoretical aspects of the control problem using the Boolean network (BN), which is a simplified model of genetic networks. It is shown that finding a control strategy leading to the desired global state is computationally intractable (NP-hard) in general. Furthermore, this hardness result is extended for BNs with considerably restricted network structures. These results justify existing exponential time algorithms for finding control strategies for probabilistic Boolean networks (PBNs). On the other hand, this paper shows that the control problem can be solved in polynomial time if the network has a tree structure. Then, this algorithm is extended for the case where the network has a few loops and the number of time steps is small. Though this paper focuses on theoretical aspects, biological implications of the theoretical results are also discussed.  相似文献   

13.
Deterministic Boolean networks have been used as models of gene regulation and other biological networks. One key element in these models is the update schedule, which indicates the order in which states are to be updated. We study the robustness of the dynamical behavior of a Boolean network with respect to different update schedules (synchronous, block-sequential, sequential), which can provide modelers with a better understanding of the consequences of changes in this aspect of the model. For a given Boolean network, we define equivalence classes of update schedules with the same dynamical behavior, introducing a labeled graph which helps to understand the dependence of the dynamics with respect to the update, and to identify interactions whose timing may be crucial for the presence of a particular attractor of the system. Several other results on the robustness of update schedules and of dynamical cycles with respect to update schedules are presented. Finally, we prove that our equivalence classes generalize those found in sequential dynamical systems.  相似文献   

14.
Complexity of gene regulatory network has been considered to be responsible for diversity of cells. Different types of cells, characterized by the expression patterns of genes, are produced in early development through the dynamics of gene activities based on the regulatory network. However, very little is known about relationship between the structure of regulatory networks and the dynamics of gene activities. In this paper, I introduce new idea of “steady-state compatibility” by which the diversity of possible gene activities can be determined from the topological structure of gene regulatory networks. The basic premise is very simple: the activity of a gene should be a function of the controlling genes. Thus, a gene should always show unique expression activity if the activities of the controlling genes are unique. Based on this, the maximum possible diversity of steady states is determined using only information regarding regulatory linkages without knowing the regulatory functions of genes. By extending this idea, some general properties were derived. For example, multiple loop structures in regulatory networks are necessary for increasing the diversity of gene activity. On the other hand, connected multiple loops sharing the same genes do not increase the diversity. The method was applied to a gene regulatory network responsible for early development in a sea urchin species. A set of important genes responsible for generating diversities of gene activities was derived based on the concept of compatibility of steady states.  相似文献   

15.
The asymptotic dynamics of random Boolean networks subject to random fluctuations is investigated. Under the influence of noise, the system can escape from the attractors of the deterministic model, and a thorough study of these transitions is presented. We show that the dynamics is more properly described by sets of attractors rather than single ones. We generalize here a previous notion of ergodic sets, and we show that the Threshold Ergodic Sets so defined are robust with respect to noise and, at the same time, that they do not suffer from a major drawback of ergodic sets. The system jumps from one attractor to another of the same Threshold Ergodic Set under the influence of noise, never leaving it. By interpreting random Boolean networks as models of genetic regulatory networks, we also propose to associate cell types to Threshold Ergodic Sets rather than to deterministic attractors or to ergodic sets, as it had been previously suggested. We also propose to associate cell differentiation to the process whereby a Threshold Ergodic Set composed by several attractors gives rise to another one composed by a smaller number of attractors. We show that this approach accounts for several interesting experimental facts about cell differentiation, including the possibility to obtain an induced pluripotent stem cell from a fully differentiated one by overexpressing some of its genes.  相似文献   

16.
We investigate how scale-free (SF) and Erd?s-Rényi (ER) topologies affect the interplay between evolvability and robustness of model gene regulatory networks with Boolean threshold dynamics. In agreement with Oikonomou and Cluzel (2006) we find that networks with SFin topologies, that is SF topology for incoming nodes and ER topology for outgoing nodes, are significantly more evolvable towards specific oscillatory targets than networks with ER topology for both incoming and outgoing nodes. Similar results are found for networks with SFboth and SFout topologies. The functionality of the SFout topology, which most closely resembles the structure of biological gene networks (Babu et al., 2004), is compared to the ER topology in further detail through an extension to multiple target outputs, with either an oscillatory or a non-oscillatory nature. For multiple oscillatory targets of the same length, the differences between SFout and ER networks are enhanced, but for non-oscillatory targets both types of networks show fairly similar evolvability. We find that SF networks generate oscillations much more easily than ER networks do, and this may explain why SF networks are more evolvable than ER networks are for oscillatory phenotypes. In spite of their greater evolvability, we find that networks with SFout topologies are also more robust to mutations (mutational robustness) than ER networks. Furthermore, the SFout topologies are more robust to changes in initial conditions (environmental robustness). For both topologies, we find that once a population of networks has reached the target state, further neutral evolution can lead to an increase in both the mutational robustness and the environmental robustness to changes in initial conditions.  相似文献   

17.
The problem of reliability of the dynamics in biological regulatory networks is studied in the framework of a generalized Boolean network model with continuous timing and noise. Using well-known artificial genetic networks such as the repressilator, we discuss concepts of reliability of rhythmic attractors. In a simple evolution process we investigate how overall network structure affects the reliability of the dynamics. In the course of the evolution, networks are selected for reliable dynamics. We find that most networks can be easily evolved towards reliable functioning while preserving the original function.  相似文献   

18.
19.
In this paper, the design problem of state estimator for genetic regulatory networks with time delays and randomly occurring uncertainties has been addressed by a delay decomposition approach. The norm-bounded uncertainties enter into the genetic regulatory networks (GRNs) in random ways, and such randomly occurring uncertainties (ROUs) obey certain mutually uncorrelated Bernoulli distributed white noise sequences. Under these circumstances, the state estimator is designed to estimate the true concentration of the mRNA and the protein of the uncertain GRNs. Delay-dependent stability criteria are obtained in terms of linear matrix inequalities by constructing a Lyapunov–Krasovskii functional and using some inequality techniques (LMIs). Then, the desired state estimator, which can ensure the estimation error dynamics to be globally asymptotically robustly stochastically stable, is designed from the solutions of LMIs. Finally, a numerical example is provided to demonstrate the feasibility of the proposed estimation schemes.  相似文献   

20.
Understanding the genetic regulatory network comprising genes, RNA, proteins and the network connections and dynamical control rules among them, is a major task of contemporary systems biology. I focus here on the use of the ensemble approach to find one or more well-defined ensembles of model networks whose statistical features match those of real cells and organisms. Such ensembles should help explain and predict features of real cells and organisms. More precisely, an ensemble of model networks is defined by constraints on the "wiring diagram" of regulatory interactions, and the "rules" governing the dynamical behavior of regulated components of the network. The ensemble consists of all networks consistent with those constraints. Here I discuss ensembles of random Boolean networks, scale free Boolean networks, "medusa" Boolean networks, continuous variable networks, and others. For each ensemble, M statistical features, such as the size distribution of avalanches in gene activity changes unleashed by transiently altering the activity of a single gene, the distribution in distances between gene activities on different cell types, and others, are measured. This creates an M-dimensional space, where each ensemble corresponds to a cluster of points or distributions. Using current and future experimental techniques, such as gene arrays, these M properties are to be measured for real cells and organisms, again yielding a cluster of points or distributions in the M-dimensional space. The procedure then finds ensembles close to those of real cells and organisms, and hill climbs to attempt to match the observed M features. Thus obtains one or more ensembles that should predict and explain many features of the regulatory networks in cells and organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号