首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibiotic resistant nosocomial infections are an important cause of mortality and morbidity in hospitals. Antibiotic cycling has been proposed to contain this spread by a coordinated use of different antibiotics. Theoretical work, however, suggests that often the random deployment of drugs ("mixing") might be the better strategy. We use an epidemiological model for a single hospital ward in order to assess the performance of cycling strategies which take into account the frequency of antibiotic resistance in the hospital ward. We assume that information on resistance frequencies stems from microbiological tests, which are performed in order to optimize individual therapy. Thus the strategy proposed here represents an optimization at population-level, which comes as a free byproduct of optimizing treatment at the individual level. We find that in most cases such an informed switching strategy outperforms both periodic cycling and mixing, despite the fact that information on the frequency of resistance is derived only from a small sub-population of patients. Furthermore we show that the success of this strategy is essentially a stochastic phenomenon taking advantage of the small population sizes in hospital wards. We find that the performance of an informed switching strategy can be improved substantially if information on resistance tests is integrated over a period of one to two weeks. Finally we argue that our findings are robust against a (moderate) preexistence of doubly resistant strains and against transmission via environmental reservoirs. Overall, our results suggest that switching between different antibiotics might be a valuable strategy in small patient populations, if the switching strategies take the frequencies of resistance alleles into account.  相似文献   

2.
Many vector-borne diseases lack effective vaccines and medications, and the limitations of traditional vector control have inspired novel approaches based on using genetic engineering to manipulate vector populations and thereby reduce transmission. Yet both the short- and long-term epidemiological effects of these transgenic strategies are highly uncertain. If neither vaccines, medications, nor transgenic strategies can by themselves suffice for managing vector-borne diseases, integrating these approaches becomes key. Here we develop a framework to evaluate how clinical interventions (i.e., vaccination and medication) can be integrated with transgenic vector manipulation strategies to prevent disease invasion and reduce disease incidence. We show that the ability of clinical interventions to accelerate disease suppression can depend on the nature of the transgenic manipulation deployed (e.g., whether vector population reduction or replacement is attempted). We find that making a specific, individual strategy highly effective may not be necessary for attaining public-health objectives, provided suitable combinations can be adopted. However, we show how combining only partially effective antimicrobial drugs or vaccination with transgenic vector manipulations that merely temporarily lower vector competence can amplify disease resurgence following transient suppression. Thus, transgenic vector manipulation that cannot be sustained can have adverse consequences—consequences which ineffective clinical interventions can at best only mitigate, and at worst temporarily exacerbate. This result, which arises from differences between the time scale on which the interventions affect disease dynamics and the time scale of host population dynamics, highlights the importance of accounting for the potential delay in the effects of deploying public health strategies on long-term disease incidence. We find that for systems at the disease-endemic equilibrium, even modest perturbations induced by weak interventions can exhibit strong, albeit transient, epidemiological effects. This, together with our finding that under some conditions combining strategies could have transient adverse epidemiological effects suggests that a relatively long time horizon may be necessary to discern the efficacy of alternative intervention strategies.  相似文献   

3.
As the understanding of the importance of social contact networks in the spread of infectious diseases has increased, so has the interest in understanding the feedback process of the disease altering the social network. While many studies have explored the influence of individual epidemiological parameters and/or underlying network topologies on the resulting disease dynamics, we here provide a systematic overview of the interactions between these two influences on population-level disease outcomes. We show that the sensitivity of the population-level disease outcomes to the combination of epidemiological parameters that describe the disease are critically dependent on the topological structure of the population’s contact network. We introduce a new metric for assessing disease-driven structural damage to a network as a population-level outcome. Lastly, we discuss how the expected individual-level disease burden is influenced by the complete suite of epidemiological characteristics for the circulating disease and the ongoing process of network compromise. Our results have broad implications for prediction and mitigation of outbreaks in both natural and human populations.  相似文献   

4.
There is growing interest in incorporating economic factors into epidemiological models in order to identify optimal strategies for disease control when resources are limited. In this paper we consider how to optimize the control of a pathogen that is capable of infecting multiple hosts with different rates of transmission within and between species. Our objective is to find control strategies that maximize the discounted number of healthy individuals. We consider two classes of host-pathogen system, comprising two host species and a common pathogen, one with asymmetrical and the other with symmetrical transmission rates, applicable to a wide range of SI (susceptible-infected) epidemics of plant and animal pathogens. We motivate the analyses with an example of sudden oak death in California coastal forests, caused by Phytophthora ramorum, in communities dominated by bay laurel (Umbellularia californica) and tanoak (Lithocarpus densiflorus). We show for the asymmetric case that it is optimal to give priority in treating disease to the more infectious species, and to treat the other species only when there are resources left over. For the symmetric case, we show that although a switching strategy is an optimum, in which preference is first given to the species with the lower level of susceptibles and then to the species with the higher level of susceptibles, a simpler strategy that favors treatment of infected hosts for the more susceptible species is a robust alternative for practical application when the optimal switching time is unknown. Finally, since transmission rates are notoriously difficult to estimate, we analyze the robustness of the strategies when the true state with respect to symmetry or otherwise is unknown but one or other is assumed.  相似文献   

5.
Traditional explorations of infectious disease evolution have considered the competition between two cross-reactive strains within the standard framework of disease models. Such techniques predict that diseases should evolve to be highly transmissible, benign to the host and possess a long infectious period: in general, diseases do not conform to this ideal. Here we consider a more holistic approach, suggesting that evolution is a trade-off between adaptive pressures at different scales: within host, between hosts and at the population level. We present a model combining within-host pathogen dynamics and transmission between individuals governed by an explicit contact network, where transmission dynamics between hosts are a function of the interaction between the pathogen and the hosts' immune system, though ultimately constrained by the contacts each infected host possesses. Our results show how each of the scales places constraints on the evolutionary behavior, and that complex dynamics may emerge due to the feedbacks between epidemiological and evolutionary dynamics. In particular, multiple stable states can occur with switching between them stochastically driven.  相似文献   

6.
Random phase variation (RPV) is a control strategy in which the expression of a cell state or phenotype randomly alternates between discrete 'on' and 'off' states. Though this mode of control is common for bacterial virulence factors like pili and toxins, precise conditions under which RPV confers an advantage have not been well defined. In Part I of this study, we predicted that fluctuating environments select for RPV if transitions between different selective environments cannot be reliably sensed (J. Theor. Biol. (2005)). However, selective forces both inside and outside of human hosts are also likely to be frequency dependent in the sense that the fitnesses of some bacterial states are greatest when rare. Here we show that RPV at slow rates can provide a survival advantage in such a frequency-dependent environment by generating population heterogeneity, essentially mimicking a polymorphism. More surprisingly, RPV at a faster 'optimal' rate can shift the population composition toward an optimal growth rate that exceeds that possible for polymorphic populations, but this optimal strategy is not evolutionarily stable. The population would be most fit if all cells randomly phase varied at the optimal rate, but individual cells have a growth-rate incentive to defect (mutate) to other switching rates or non-phase variable phenotype expression, leading to an overall loss of fitness of the individual and the population. This scenario describes a modified Prisoner's Dilemma game (Evolution and the Theory of Games, Cambridge University Press, Cambridge, New York, 1982, viii, 224pp.; Nature 398 (6726) (1999) 367), with random phase variation at optimal switching rates serving as the cooperation strategy.  相似文献   

7.
Several studies have found that some parents delay the age at which their children receive pediatric vaccines due to perception of higher vaccine risk at the recommended age of vaccination. This has been particularly apparently during the Measles-Mumps-Rubella scare in the United Kingdom. Under a voluntary vaccination policy, vaccine coverage in certain age groups is a potentially complex interplay between vaccinating behaviour, disease dynamics, and age-specific risk factors. Here, we construct an age-structured game dynamic model, where individuals decide whether to vaccinate according to imitation dynamics depending on age-dependent disease prevalence and perceived risk of vaccination. Individuals may be timely vaccinators, delayers, or non-vaccinators. The model exhibits multiple equilibria and a broad range of possible dynamics. For certain parameter regimes, the proportion of timely vaccinators and delayers oscillate in an anti-phase fashion in response to oscillations in infection prevalence. Under an exogenous change to the perceived risk of vaccination as might occur during a vaccine scare, the model can also capture an increase in delayer strategists similar in magnitude to that observed during the Measles-Mumps-Rubella vaccine scare in the United Kingdom. Our model also shows that number of delayers steadily increases with increasing severity of the scare, whereas it saturates to specific value with increases in duration of the scare. Finally, by comparing the model dynamics with and without the option of a delayer strategy, we show that adding a third delayer strategy can have a stabilizing effect on model dynamics. In an era where individual choice—rather than accessibility—is becoming an increasingly important determinant of vaccine uptake, more infectious disease models may need to use game theory or related techniques to determine vaccine uptake.  相似文献   

8.
The spread of pathogens fundamentally depends on the underlying contacts between individuals. Modeling the dynamics of infectious disease spread through contact networks, however, can be challenging due to limited knowledge of how an infectious disease spreads and its transmission rate. We developed a novel statistical tool, INoDS (Identifying contact Networks of infectious Disease Spread) that estimates the transmission rate of an infectious disease outbreak, establishes epidemiological relevance of a contact network in explaining the observed pattern of infectious disease spread and enables model comparison between different contact network hypotheses. We show that our tool is robust to incomplete data and can be easily applied to datasets where infection timings of individuals are unknown. We tested the reliability of INoDS using simulation experiments of disease spread on a synthetic contact network and find that it is robust to incomplete data and is reliable under different settings of network dynamics and disease contagiousness compared with previous approaches. We demonstrate the applicability of our method in two host-pathogen systems: Crithidia bombi in bumblebee colonies and Salmonella in wild Australian sleepy lizard populations. INoDS thus provides a novel and reliable statistical tool for identifying transmission pathways of infectious disease spread. In addition, application of INoDS extends to understanding the spread of novel or emerging infectious disease, an alternative approach to laboratory transmission experiments, and overcoming common data-collection constraints.  相似文献   

9.
Contact patterns in populations fundamentally influence the spread of infectious diseases. Current mathematical methods for epidemiological forecasting on networks largely assume that contacts between individuals are fixed, at least for the duration of an outbreak. In reality, contact patterns may be quite fluid, with individuals frequently making and breaking social or sexual relationships. Here, we develop a mathematical approach to predicting disease transmission on dynamic networks in which each individual has a characteristic behaviour (typical contact number), but the identities of their contacts change in time. We show that dynamic contact patterns shape epidemiological dynamics in ways that cannot be adequately captured in static network models or mass-action models. Our new model interpolates smoothly between static network models and mass-action models using a mixing parameter, thereby providing a bridge between disparate classes of epidemiological models. Using epidemiological and sexual contact data from an Atlanta high school, we demonstrate the application of this method for forecasting and controlling sexually transmitted disease outbreaks.  相似文献   

10.
Chronic viral diseases such as human immunodeficiency virus (HIV) and hepatitis B virus (HBV) afflict millions of people worldwide. A key public health challenge in managing such diseases is identifying infected, asymptomatic individuals so that they can receive antiviral treatment. Such treatment can benefit both the treated individual (by improving quality and length of life) and the population as a whole (through reduced transmission). We develop a compartmental model of a chronic, treatable infectious disease and use it to evaluate the cost and effectiveness of different levels of screening and contact tracing. We show that: (1) the optimal strategy is to get infected individuals into treatment at the maximal rate until the incremental health benefits balance the incremental cost of controlling the disease; (2) as one reduces the disease prevalence by moving people into treatment (which decreases the chance that they will infect others), one should increase the level of contact tracing to compensate for the decreased effectiveness of screening; (3) as the disease becomes less prevalent, it is optimal to spend more per case identified; and (4) the relative mix of screening and contact tracing at any level of disease prevalence is such that the marginal efficiency of contact tracing (cost per infected person found) equals that of screening if possible (e.g., when capacity limitations are not binding). We also show how to determine the cost-effective equilibrium level of disease prevalence (among untreated individuals), and we develop an approximation of the path of the optimal prevalence over time. Using this, one can obtain a close approximation of the optimal solution without having to solve an optimal control problem. We apply our methods to an example of hepatitis B virus.  相似文献   

11.
Although local eradication is routinely attempted following introduction of disease into a new region, failure is commonplace. Epidemiological principles governing the design of successful control are not well-understood. We analyse factors underlying the effectiveness of reactive eradication of localised outbreaks of invading plant disease, using citrus canker in Florida as a case study, although our results are largely generic, and apply to other plant pathogens (as we show via our second case study, citrus greening). We demonstrate how to optimise control via removal of hosts surrounding detected infection (i.e. localised culling) using a spatially-explicit, stochastic epidemiological model. We show how to define optimal culling strategies that take account of stochasticity in disease spread, and how the effectiveness of disease control depends on epidemiological parameters determining pathogen infectivity, symptom emergence and spread, the initial level of infection, and the logistics and implementation of detection and control. We also consider how optimal culling strategies are conditioned on the levels of risk acceptance/aversion of decision makers, and show how to extend the analyses to account for potential larger-scale impacts of a small-scale outbreak. Control of local outbreaks by culling can be very effective, particularly when started quickly, but the optimum strategy and its performance are strongly dependent on epidemiological parameters (particularly those controlling dispersal and the extent of any cryptic infection, i.e. infectious hosts prior to symptoms), the logistics of detection and control, and the level of local and global risk that is deemed to be acceptable. A version of the model we developed to illustrate our methodology and results to an audience of stakeholders, including policy makers, regulators and growers, is available online as an interactive, user-friendly interface at http://www.webidemics.com/. This version of our model allows the complex epidemiological principles that underlie our results to be communicated to a non-specialist audience.  相似文献   

12.
Transmission events are the fundamental building blocks of the dynamics of any infectious disease. Much about the epidemiology of a disease can be learned when these individual transmission events are known or can be estimated. Such estimations are difficult and generally feasible only when detailed epidemiological data are available. The genealogy estimated from genetic sequences of sampled pathogens is another rich source of information on transmission history. Optimal inference of transmission events calls for the combination of genetic data and epidemiological data into one joint analysis. A key difficulty is that the transmission tree, which describes the transmission events between infected hosts, differs from the phylogenetic tree, which describes the ancestral relationships between pathogens sampled from these hosts. The trees differ both in timing of the internal nodes and in topology. These differences become more pronounced when a higher fraction of infected hosts is sampled. We show how the phylogenetic tree of sampled pathogens is related to the transmission tree of an outbreak of an infectious disease, by the within-host dynamics of pathogens. We provide a statistical framework to infer key epidemiological and mutational parameters by simultaneously estimating the phylogenetic tree and the transmission tree. We test the approach using simulations and illustrate its use on an outbreak of foot-and-mouth disease. The approach unifies existing methods in the emerging field of phylodynamics with transmission tree reconstruction methods that are used in infectious disease epidemiology.  相似文献   

13.
The spatial-temporal dynamics of farm animal diseases depend both on disease specific processes and the underlying contact network between farms. Indirect transmission via free-living bacteria in the environment is an important transmission route and contributes significantly to the dynamics. The pair-wise model has been developed to include both direct transmission and indirect transmission via free stages. The model is compared with stochastic simulations of epidemics on contact networks. The network framework is applied to the investigation of the epidemiological dynamics of between-herd transmission of Salmonella spp. The main results help to explain differences in observed epidemiological patterns and to identify possible causes for different strains of Salmonella developing so much variation in their infection dynamics in UK dairy herds. Numerical results show that shorter infectious period, more persistent immune response and more rapid removal of faeces result in a lower prevalence of infection and a greater tendency for (damped) oscillation. A possible control strategy is consequently suggested. Furthermore, the effect of network structure on long-term dynamics is examined.  相似文献   

14.
In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones—responsible for acute vision—is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide.  相似文献   

15.
The dynamics of a spreading disease and individual behavioral changes are entangled processes that have to be addressed together in order to effectively manage an outbreak. Here, we relate individual risk perception to the adoption of a specific set of control measures, as obtained from an extensive large-scale survey performed via Facebook—involving more than 500,000 respondents from 64 countries—showing that there is a “one-to-one” relationship between perceived epidemic risk and compliance with a set of mitigation rules. We then develop a mathematical model for the spreading of a disease—sharing epidemiological features with COVID-19—that explicitly takes into account non-compliant individual behaviors and evaluates the impact of a population fraction of infectious risk-deniers on the epidemic dynamics. Our modeling study grounds on a wide set of structures, including both synthetic and more than 180 real-world contact patterns, to evaluate, in realistic scenarios, how network features typical of human interaction patterns impact the spread of a disease. In both synthetic and real contact patterns we find that epidemic spreading is hindered for decreasing population fractions of risk-denier individuals. From empirical contact patterns we demonstrate that connectivity heterogeneity and group structure significantly affect the peak of hospitalized population: higher modularity and heterogeneity of social contacts are linked to lower peaks at a fixed fraction of risk-denier individuals while, at the same time, such features increase the relative impact on hospitalizations with respect to the case where everyone correctly perceive the risks.  相似文献   

16.
Managing infectious disease is among the foremost challenges for public health policy. Interpersonal contacts play a critical role in infectious disease transmission, and recent advances in epidemiological theory suggest a central role for adaptive human behaviour with respect to changing contact patterns. However, theoretical studies cannot answer the following question: are individual responses to disease of sufficient magnitude to shape epidemiological dynamics and infectious disease risk? We provide empirical evidence that Americans voluntarily reduced their time spent in public places during the 2009 A/H1N1 swine flu, and that these behavioural shifts were of a magnitude capable of reducing the total number of cases. We simulate 10 years of epidemics (2003–2012) based on mixing patterns derived from individual time-use data to show that the mixing patterns in 2009 yield the lowest number of total infections relative to if the epidemic had occurred in any of the other nine years. The World Health Organization and other public health bodies have emphasized an important role for ‘distancing’ or non-pharmaceutical interventions. Our empirical results suggest that neglect for voluntary avoidance behaviour in epidemic models may overestimate the public health benefits of public social distancing policies.  相似文献   

17.
Comparison of control strategies against animal infectious diseases allows determining optimal strategies according to their epidemiological and/or economic impacts. However, in real life, the choice of a control strategy does not always obey a pure economic or epidemiological rationality. The objective of this study was to analyze the choice of a foot and mouth disease (FMD) control strategy as a decision-making process in which the decision-maker is influenced by several stakeholders (government, agro-food industries, public opinion). For each of these, an indicator of epizootic impact was quantified to compare seven control strategies. We then determined how, in France, the optimal control strategy varied according to the relative weights of stakeholders and to the perception of risk by the decision-maker (risk-neutral/risk-averse). When the scope of decision was national, whatever their perception of risk and the stakeholders'' weights, decision-makers chose a strategy based on vaccination. This consensus concealed marked differences between regions, which were connected with the regional breeding characteristics. Vaccination-based strategies were predominant in regions with dense cattle and swine populations, and in regions with a dense population of small ruminants, combined with a medium density of cattle and swine. These differences between regions suggested that control strategies could be usefully adapted to local breeding conditions. We then analyzed the feasibility of adaptive decision-making processes depending on the date and place where the epizootic starts, or on the evolution of the epizootic over time. The initial conditions always explained at least half of the variance of impacts, the remaining variance being attributed to the variability of epizootics evolution. However, the first weeks of this evolution explained a large part of the impacts variability. Although the predictive value of the initial conditions for determining the optimal strategy was weak, adaptive strategies changing dynamically according to the evolution of the epizootic appeared feasible.  相似文献   

18.
Wildlife disease transmission, at a local scale, can occur from interactions between infected and susceptible conspecifics or from a contaminated environment. Thus, the degree of spatial overlap and rate of contact among deer is likely to impact both direct and indirect transmission of infectious diseases such chronic wasting disease (CWD) or bovine tuberculosis. We identified a strong relationship between degree of spatial overlap (volume of intersection) and genetic relatedness for female white-tailed deer in Wisconsin’s area of highest CWD prevalence. We used volume of intersection as a surrogate for contact rates between deer and concluded that related deer are more likely to have contact, which may drive disease transmission dynamics. In addition, we found that age of deer influences overlap, with fawns exhibiting the highest degree of overlap with other deer. Our results further support the finding that female social groups have higher contact among related deer which can result in transmission of infectious diseases. We suggest that control of large social groups comprised of closely related deer may be an effective strategy in slowing the transmission of infectious pathogens, and CWD in particular.  相似文献   

19.
Okosun KO  Ouifki R  Marcus N 《Bio Systems》2011,106(2-3):136-145
We derive and analyse a deterministic model for the transmission of malaria disease with mass action form of infection. Firstly, we calculate the basic reproduction number, R(0), and investigate the existence and stability of equilibria. The system is found to exhibit backward bifurcation. The implication of this occurrence is that the classical epidemiological requirement for effective eradication of malaria, R(0)<1, is no longer sufficient, even though necessary. Secondly, by using optimal control theory we derive the conditions under which it is optimal to eradicate the disease and examine the impact of a possible combined vaccination and treatment strategy on the disease transmission. When eradication is impossible, we derive the necessary conditions for optimal control of the disease using Pontryagin's Maximum Principle. The results obtained from the numerical simulations of the model show that a possible vaccination combined with effective treatment regime would reduce the spread of the disease appreciably.  相似文献   

20.
This paper addresses some questions related to the evolution of cooperative behaviors, in the context of energetic metabolism. Glycolysis can perform either under a dissipative working regime suitable for rapid proliferation or under an efficient regime that entails a good modus operandi under conditions of glucose shortage. A cellular mechanism allowing switching between these two regimes may represent an evolutionary achievement. Thus, we have explored the conditions that might have favored the emergence of such an accommodative mechanism. Because of an inevitable conflict for resources between individual interests and the common good, rapid and inefficient use of glucose is always favored by natural selection in spatially homogeneous environment, regardless of the external conditions. In contrast, when the space is structured, the behavior of the system is determined by its free energy content. If the fuel is abundant, the dissipative strategy dominates the space. However, under famine conditions the efficient regime represents an evolutionary stable strategy in a Harmony game. Between these two extreme situations, both metabolic regimes are engaged in a Prisoner’s Dilemma game, where the output depends on the extracellular free energy. The energy transition values that lead from one domain to another have been calculated. We conclude that an accommodative mechanism permitting alternation between dissipative and efficient regimes might have evolved in heterogeneous and highly fluctuating environments. Overall, the current work shows how evolutionary optimization and game-theoretical approaches can be complementary in providing useful insights into biochemical systems. Reviewing Editor: Dr. Antony Dean  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号