首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Forest-insect systems frequently show cyclic dynamics which has been of considerable interest to both experimental and theoretical ecologists. One important issue has been the manner in which density-dependence acting on the host population through resource competition influences the likelihood of population cycles. Existing models make contradictory predictions. Here, we explore two models that allow different forms of density-dependence to be examined. We find that host density-dependence can influence the persistence of the host-pathogen interaction, the likelihood of population cycles and the stability of the host-pathogen interaction. In particular, over-compensatory density-dependence is likely to lead to host-pathogen cycles while under-compensatory density-dependence can promote stability. We discuss these differences with reference to the different forms of intraspecific competition and recent developments in insect population ecology.  相似文献   

2.
Multiple pathogenic infections can influence disease transmission and virulence, and have important consequences for understanding the community ecology and epidemiology of host-pathogen interactions. Here the population and evolutionary dynamics of a host-pathogen interaction with free-living stages are explored in the presence of a non-lethal synergist that hosts must tolerate. Through the coupled effects on pathogen transmission, host mass gain and allometry it is shown how investing in tolerance to a non-lethal synergist can lead to a broad range of different population dynamics. The effects of the synergist on pathogen fitness are explored through a series of life-history trait trade-offs. Coupling trade-offs between pathogen yield and pathogen speed of kill and the presence of a synergist favour parasites that have faster speeds of kill. This evolutionary change in pathogen characteristics is predicted to lead to stable population dynamics. Evolutionary analysis of tolerance of the synergist (strength of synergy) and lethal pathogen yield show that decreasing tolerance allows alternative pathogen strategies to invade and replace extant strategies. This evolutionary change is likely to destabilise the host-pathogen interaction leading to population cycles. Correlated trait effects between speed of kill and tolerance (strength of synergy) show how these traits can interact to affect the potential for the coexistence of multiple pathogen strategies. Understanding the consequences of these evolutionary relationships is important for the both the evolutionary and population dynamics of host-pathogen interactions.  相似文献   

3.
The influence of spatial heterogeneity on the population dynamics of a naturally occurring invertebrate host-pathogen system was experimentally investigated. At ten week intervals over a two year period, I quantified the spatial distribution of natural populations of the terrestrial isopod crustacean Porcellio scaber infected with the isopod iridescent virus (IIV). During the seasonally dry periods of summer and early fall in central California, isopod populations were highly aggregated and the degree of patchiness and distance between inhabited patches was greatest. Coincident with increased patchiness and patch spacing was an increase in isopod density within patches. During the wet seasons of winter and spring, isopod population patchiness, inter-patch spacing, and within-patch density was low. Seasonal changes in virus prevalence were negatively correlated with within-patch density, patchiness, and inter-patch spacing. The influence of the spatial distribution of isopods on virus prevalence was also tested in field experiments. The virus was introduced into arrays of artificial habitat patches colonized by isopods in which interpatch distance was varied. The prevalence of resulting infections was monitored at weekly intervals. In addition, dispersal rates between artificial patches and natural patches were quantified and compared. The results showed that isopods in treatments with the smallest inter-patch spacing had the highest virus prevalence, with generally lower prevalence among isopods in more widely spaced patches. The spacing of experimental patches significantly affected virus prevalence, although the experiments did not resolve a clear relationship between patch spacing and virus prevalence. Rates of dispersal between patches decreased with increased patch spacing, and these rates did not differ significantly from dispersal between natural patches. The results suggest that rates of dispersal between isopod subpopulations may be an important component of the infection dynamics in this system. I discuss the consequences of these findings for host-pathogen dynamics in fragmented habitats, and for other ecological interactions in spatially heterogeneous habitats.  相似文献   

4.
Observations by Dobzhansky’s group in the 1940s suggesting that the presence of recessive genotypes could account for lower larval developmental rates in Drosophila melanogaster were not confirmed at the time and all subsequent investigations on this subject focused on the analysis of ecological models based on competition among pre-adult individuals. However, a paper published in this journal in 1991 eventually confirmed the finding made by Dobzhansky and his co-workers. In this report, we provide a theoretical analysis of the population genetic effects of a delay in the rate of larval development produced by such a genetic mechanism.  相似文献   

5.
Recent work suggests that foliar- and root-feeding insects can interact in a novel plus-minus fashion. However, the effects of herbivores may be different at different densities. This paper describes two laboratory experiments investigating the effect of increasing insect density on plant performance and the host-plant mediated interaction between a leaf-mining fly and root-feeding chafer larvae. Above- and below-ground insect herbivory decreased plant performance. The effects of the root feeder were, for some parameters, different between the two densities of chafer larvae. Leaf mining significantly decreased the performance of the chafer larvae, while root herbivory was found to increase the pupal weight (related to fecundity) of the leaf miner. The effects of root herbivory suggest that the relationships between herbivore density and plant performance may be curved as the greater chafer density had no significant increased effect on the plants or foliar-feeding insects.  相似文献   

6.
The effect of tooth shape on the breakdown of insects   总被引:2,自引:0,他引:2  
  相似文献   

7.
HIV-infected patients who receive treatment survive for some years after they have acquired the disease. The received treatment causes sustained reduction of viral reproduction by improving the immune function, leading to prolonged progression period to AIDS development. This prolonged progression period has created variability in survival times that affects estimates produced using mathematical models that do not include delay in disease related mortality. This paper investigates the effect of including delay in AIDS death occurrence in HIV/AIDS transmission models. A simple mathematical model with two stages of HIV progression is developed and extended to include time delay in the occurrence of AIDS deaths. Numerical simulations indicate that time delay changes the mortality curves considerably but has less effect on the proportion of infectives. The study highlights the importance of incorporating delay in models of HIV/AIDS for the production of accurate HIV/AIDS estimates.  相似文献   

8.
Frequency distributions of insect immatures per host are often fitted to contagious distributions, such as the negative binomial, to deduce oviposition pattern. However, different mechanisms can be involved for each theoretical distribution and additional biological information is needed to correctly interpret the fits. We chose the chestnut weevil Curculio elephas, a pest of the European chestnut Castanea sativa, as a model to illustrate the difficulties of inferring oviposition pattern from fits to theoretical distributions and from the variance/mean ratio. From field studies over 13–16 years, we show that 20 out of the 31 yearly distributions available fit a negative binomial and 25 a zero-inflated Poisson (ZIP). No distribution fits a Poisson distribution. The ZIP distribution assumes heterogeneity within the fruit population. There are two categories of host: the first comprises chestnuts unsuitable for weevil oviposition or in excess relative to the number of weevil females, and the second comprises suitable fruits in which oviposition behavior is random. Our results confirm this host heterogeneity. According to the ZIP distribution, the first category of hosts includes on average 74% of the chestnuts. A negative binomial distribution may be generated by either true or false contagion. We show that neither interference between weevil females, nor spatial variation in the infestation rate exist. Consequently, the observed distributions of immatures are not the result of false contagion. Nevertheless, we cannot totally exlude true contagion of immatures. In this paper we discuss the difficulty of testing true contagion in natural conditions. These results show that we cannot systematically conclude in favour of contagion when fitting a distribution such as the negative binomial or when a variance/mean ratio is higher than unity. Received: 22 September 1997 / Accepted: 15 December 1997  相似文献   

9.
植物挥发性信息化学物质在昆虫寄主选择行为中的作用   总被引:8,自引:0,他引:8  
植物信息化学物质在植食性昆虫的寄主定向、产卵、聚集、传粉等行为中发挥着重要作用,对其进行深入研究,不仅有助于阐明植食性昆虫的寄主选择机理,也可为提出新的害虫防治策略提供理论依据.本文概述了近年来昆虫寄主选择定向中起关键作用的植物挥发性信息化学物质的种类、基本特性和作用方式,并就植物挥发性信息化合物应用前景和目前存在的主要问题进行了讨论.  相似文献   

10.
Rising temperatures and changes in the precipitation regime will have a strong impact on the quality of the snow cover in the Arctic. A snow cover of good quality protecting lemmings from cold temperatures and predators is thought to be an important factor for maintaining the cyclic dynamic of their populations in the tundra. We examined if the characteristics of annual fluctuations (amplitude and shape of phases) in brown lemming (Lemmus trimucronatus) density could be determined by snow depth, snow density, sub-nivean temperature and persistence of snow. Using an 18-year time series of brown lemming abundance on Bylot Island in the Canadian Arctic, we tested if snow variables could explain the residual variation between the observed lemming density and the one predicted by models where cyclicity had been accounted for. Our analysis provides support for the hypothesis that snow cover can affect the amplitude and possibly also the periodicity of lemming population cycles in the High Arctic. Summer abundance of brown lemmings was higher following winters with a deep snow cover and a low-density snow pack near the ground but was unaffected by the date of establishment or melting and duration of the snow cover. Two snow variables showed a temporal trend; mean winter snow depth tended to increase and date of establishment of the hiemal threshold occurred earlier over time. These temporal trends, which should be favourable to lemmings, may explain why healthy population cycles have apparently been maintained at our study site contrary to other Arctic sites.  相似文献   

11.
Understanding the processes that shape the genetic structure of parasite populations and the functional consequences of different parasite genotypes is critical for our ability to predict how an infection can spread through a host population and for the design of effective vaccines to combat infection and disease. Here, we examine how the genetic structure of parasite populations responds to host genetic heterogeneity. We consider the well-characterized molecular specificity of major histocompatibility complex binding of antigenic peptides to derive deterministic and stochastic models. We use these models to ask, firstly, what conditions favour the evolution of generalist parasite genotypes versus specialist parasite genotypes? Secondly, can parasite genotypes coexist in a population? We find that intragenomic interactions between parasite loci encoding antigenic peptides are pivotal in determining the outcome of evolution. Where parasite loci interact synergistically (i.e. the recognition of additional antigenic peptides has a disproportionately large effect on parasite fitness), generalist parasite genotypes are favoured. Where parasite loci act multiplicatively (have independent effects on fitness) or antagonistically (have diminishing effects on parasite fitness), specialist parasite genotypes are favoured. A key finding is that polymorphism is not stable and that, with respect to functionally important antigenic peptides, parasite populations are dominated by a single genotype.  相似文献   

12.
Obligate, intracellular bacteria of the genus Wolbachia often behave as reproductive parasites by manipulating host reproduction to enhance their vertical transmission. One of these reproductive manipulations, cytoplasmic incompatibility, causes a reduction in egg-hatch rate in crosses between individuals with differing infections. Applied strategies based upon cytoplasmic incompatibility have been proposed for both the suppression and replacement of host populations. As Wolbachia infections occur within a broad range of invertebrates, these strategies are potentially applicable to a variety of medically and economically important insects. Here, we examine the interaction between Wolbachia infection frequency and host population size. We use a model to describe natural invasions of Wolbachia infections, artificial releases of infected hosts and releases of sterile males, as part of a traditional sterile insect technique programme. Model simulations demonstrate the importance of understanding the reproductive rate and intraspecific competition type of the targeted population, showing that releases of sterile or incompatible individuals may cause an undesired increase in the adult number. In addition, the model suggests a novel applied strategy that employs Wolbachia infections to suppress host populations. Releases of Wolbachia-infected hosts can be used to sustain artificially an unstable coexistence of multiple incompatible infections within a host population, allowing the host population size to be reduced, maintained at low levels, or eliminated.  相似文献   

13.
The resource concentration hypothesis (Root 1973) predicts that specialist herbivorous insects should be more abundant in large patches of host plants, because the insects are more likely to find and stay longer in those patches. Between August 1989 and January 1990 we experimentally tested Root's hypothesis by analyzing the numerical response of four species of herbivorous insects associated with patches of 4, 16, 64 and 225 cabbage plants, Brassica oleracea var. capitata. In addition, we studied the colonization of patches by adults of Plutella xylostella (L.) (Lepidoptera: Plutellidae), and the migration of their larvae in patches of different sizes. No herbivorous insect densities differed significantly with patch size. Adults of P. xylostella colonized all kind of patches equally. Larvae did not migrate between patches, and their disappearance rate did not differ between patches. The resource concentration hypothesis is organism-dependent, being a function of the adult and juvenile herbivore dispersal behavior in relation to the spatial scale of patchiness.  相似文献   

14.
Phytophagous insects choose their feeding resources according to their own requirements in addition to properties of the host plants, such as biomechanical defences. The feeding preferences of the native folivorous insects of the Andean‐Patagonian forest (Argentina) have rarely been studied. These environments present a wide diversity and abundance of insects associated with trees of the Nothofagus and Lophozonia (Nothofagaceae) genera, which represent the main tree species of the forests of the southern hemisphere. In particular, Lophozonia alpina and Lophozonia obliqua are of great interest because they have a wide distribution, a high capacity for hybridization and exhibit great phenotypic plasticity. This versatility causes substantial variation in the biomechanical properties of leaves, affecting the feeding preferences of insects. The purpose of this work was to study the food selection behaviour of three leaf‐chewing insects (Polydrusus nothofagii, Polydrusus roseaus (Coleoptera: Curculionidae) and Perzelia arda (Lepidoptera: Oecophoridae)) associated with L. alpina and L. obliqua as host plants. Based on their choices, our aim was to determine a preference scale for each insect species and the variables on which these preferences were based. Therefore, we selected trees of L. alpina and L. obliqua, measured several properties such as cellulose content and recorded which leaves were eaten. As a result, we determined that the three species of insects feed on both host plants but prefer the leaves of L. obliqua, with cellulose content being the main determining factor for their decisions. However, in the case of P. arda, there was a positive relationship between cellulose and host plant preference, whereas there was an opposite relationship for the weevils. We conclude that during feeding selection, there are some properties of the leaves that have a more important role than others and that the same property does not exert the same behavioural response in all folivorous insects.  相似文献   

15.
Recent theory suggests that absolute population size may qualitatively influence the outcome of evolution under disruptive selection in asexual populations. Large populations are predicted to undergo rapid evolutionary branching; however, in small populations, the waiting time to branching increases steeply with decreasing abundance, and below a critical size, the population remains monomorphic indefinitely. Here, we (1) extend the theory to sexual populations and (2) confront its predictions with empirical data, testing statistically whether lake size affects the level of resource polymorphism in arctic char (Salvelinus alpinus) in 22 lakes of different sizes. For a given level of recombination, our model predicts qualitatively similar relations between population size and time to evolutionary branching (either speciation or evolution of genetic polymorphism) as the asexual model, while recombination further increases the delay to branching. The loss of polymorphism at certain loci, an inherent aspect of multilocus-trait evolution, may increase the delay to speciation, resulting in stable genetic polymorphism without speciation. The empirical analysis demonstrates that the occurrence of resource polymorphism depends on both lake size and the number of coexisting fish species. For a given number of coexisting species, the level of polymorphism increases significantly with lake size, thus confirming our model prediction.  相似文献   

16.
Many of the simple mathematical models currently in use often fail to capture important biological factors. Here we extend current models of insect-pathogen interactions to include seasonality in the birth rate. In particular, we consider the SIR model with self-regulation when applied to specific cases--rabbit haemorrhagic disease and fox rabies. In this paper, we briefly summarize the results of the model with a constant time-independent birth rate, a, which we then replace with the time dependent birth rate a(t), to investigate how this effects the dynamics of the host population. We can split parameter space into an area in which the model without seasonality has no oscillations, in which case a simple averaging rule predicts the behaviour. Alternatively, in the area where oscillations to the equilibrium do occur in the non-seasonal model, disease persistence is more complicated and we get more complex dynamical behaviour in this case. We apply resonance techniques to discover the structure of the subharmonic modes of the SIR model with self-regulation. We then look at whether many biological systems are likely to display these "resonant" dynamics and find that we would expect them to be widespread.  相似文献   

17.
Abstract This field study was designed to test whether the taxonomic group and geographic range size of a host plant species, usually found to influence insect species richness in other parts of the world, affected the number of gall species on Australian eucalypts. We assessed the local and regional species richness of gall-forming insects on five pairs of closely related eucalypt species. One pair belonged to the subgenus Corymbia, one to Monocalyptus, and three to different sections of Symphyomyrtus. Each eucalypt pair comprised a large and a small geographic range species. Species pairs were from coastal or inland regions of eastern Australia. The total number of gall species on eucalypt species with large geographic ranges was greater than on eucalypt species with small ranges, but only after the strong effect of eucalypt taxonomic grouping was taken into account. There was no relationship between the geographic range size of eucalypt species and the size of local assemblages of gall species, but the variation in insect species composition between local sites was higher on eucalypt species with large ranges than on those with small ranges. Thus the effect of host plant range size on insect species richness was due to greater differentiation between more widespread locations, rather than to greater local species richness. This study confirms the role of the geographic range size of a host plant in the determination of insect species richness and provides evidence for the importance of the taxon of a host plant.  相似文献   

18.
Companion plants grown as ‘trap crops’ or ‘intercrops’ can be used to reduce insect infestations in field crops. The ways in which such reductions are achieved are being described currently using either a chemical approach, based on the ‘push‐pull strategy’, or a biological approach, based on the ‘appropriate/inappropriate landing theory’. The chemical approach suggests that insect numbers are reduced by chemicals from the intercrop ‘repelling’ insects from the main crop, and by chemicals from the trap‐crop ‘attracting’ insects away from the main crop. This approach is based on the assumptions that (1) plants release detectable amounts of volatile chemicals, and (2) insects ‘respond’ while still some distance away from the emitting plant. We discuss whether the above assumptions can be justified using the ‘appropriate/inappropriate landing theory’. Our tenet is that specialist insects respond only to the volatile chemicals released by their host plants and that these are released in such small quantities that, even with a heightened response to such chemicals, specialist insects can only detect them when a few metres from the emitting plant. We can find no robust evidence in the literature that plant chemicals ‘attract’ insects from more than 5 m and believe that ‘trap crops’ function simply as ‘interception barriers’. We can also find no evidence that insects are ‘repelled’ from landing on non‐host plants. Instead, we believe that ‘intercrops’ disrupt host‐plant finding by providing insects with a choice of host (appropriate) and non‐host (inappropriate) plant leaves on which to land, as our research has shown that, for intercropping to be effective, insects must land on the non‐host plants. Work is needed to determine whether non‐host plants are repellent (chemical approach) or ‘non‐stimulating’ (biological approach) to insects.  相似文献   

19.
20.
基于传统的SIR传染病模型,本文提出了一类具有非线性发生率的带时滞的传染病模型,得出了当S0〈T= μ2+λ/β,对任意的时间滞后^,无病平衡点岛是局部渐近稳定的;当S0〉 μ2+λ/β,无病平衡点E0是不稳定的,此时,正平衡点E+是局部渐近稳定的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号