首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
For the first time in 15 years, new antiepileptic medications are available for the treatment of patients with seizure disorders. These drugs have demonstrated efficacy in animal models of epilepsy and in controlled clinical trials. Felbamate was licensed in 1993 for use as adjunctive therapy or monotherapy in adults with partial or tonic-clonic seizures and as adjunctive therapy for children with the Lennox-Gastaut syndrome. Gabapentin was approved January 1994 as adjunctive therapy in patients 12 years or older with partial seizures, with or without secondary generalization. Lamotrigine is expected to be approved this year for the treatment of partial and tonic-clonic seizures in adults. Last, a new drug application has been filed for vigabatrin this year, with possible licensing next year. These four anticonvulsants present new options in the treatment of patients with refractory epilepsy and are not merely congeners of previously available treatments. They have unique clinical spectrums and are reported to be safer and better tolerated than conventional therapy. Trials to compare their use with that of conventional therapy have not been done, and their use in the initial treatment of patients with epilepsy is not completely clear.  相似文献   

2.
The identification of potential therapeutic agents for the treatment of epilepsy requires the use of seizure models. Except for some early treatments, including bromides and phenobarbital, the antiseizure activity of all clinically used drugs was, for the most part, defined by acute seizure models in rodents using the maximal electroshock and subcutaneous pentylenetetrazole seizure tests and the electrically kindled rat. Unfortunately, the clinical evidence to date would suggest that none of these models, albeit useful, are likely to identify those therapeutics that will effectively manage patients with drug resistant seizures. Over the last 30 years, a number of animal models have been developed that display varying degrees of pharmacoresistance, such as the phenytoin- or lamotrigine-resistant kindled rat, the 6-Hz mouse model of partial seizures, the intrahippocampal kainate model in mice, or rats in which spontaneous recurrent seizures develops after inducing status epilepticus by chemical or electrical stimulation. As such, these models can be used to study mechanisms of drug resistance and may provide a unique opportunity for identifying a truly novel antiseizure drug (ASD), but thus far clinical evidence for this hope is lacking. Although animal models of drug resistant seizures are now included in ASD discovery approaches such as the ETSP (epilepsy therapy screening program), it is important to note that no single model has been validated for use to identify potential compounds for as yet drug resistant seizures, but rather a battery of such models should be employed, thus enhancing the sensitivity to discover novel, highly effective ASDs. The present review describes the previous and current approaches used in the search for new ASDs and offers some insight into future directions incorporating new and emerging animal models of therapy resistance.  相似文献   

3.
Recent experimental and clinical studies have provided diverse insight into the mechanisms of human focal seizure initiation and propagation. Often these findings exist at different scales of observation, and are not reconciled into a common understanding. Here we develop a new, multiscale mathematical model of cortical electric activity with realistic mesoscopic connectivity. Relating the model dynamics to experimental and clinical findings leads us to propose three classes of dynamical mechanisms for the onset of focal seizures in a unified framework. These three classes are: (i) globally induced focal seizures; (ii) globally supported focal seizures; (iii) locally induced focal seizures. Using model simulations we illustrate these onset mechanisms and show how the three classes can be distinguished. Specifically, we find that although all focal seizures typically appear to arise from localised tissue, the mechanisms of onset could be due to either localised processes or processes on a larger spatial scale. We conclude that although focal seizures might have different patient-specific aetiologies and electrographic signatures, our model suggests that dynamically they can still be classified in a clinically useful way. Additionally, this novel classification according to the dynamical mechanisms is able to resolve some of the previously conflicting experimental and clinical findings.  相似文献   

4.
Seventeen newborns were monitored for 24 hours using a three-channel ambulatory EEG (A/EEG). All newborns were thought to be having subtle seizures by the nursery staff. Fifteen of the 17 newborns were recorded as having 1-30 clinical seizures during the time of monitoring. Only one newborn had clinically identified seizures associated with A/EEG discharges. The seizures were characterized by eye rolling. Fifty-two episodes (thought to be seizures) of lip smacking, bicycling, jerking, fisting, staring, stiffening, or any combination of the above occurred in eight newborns without an associated discharge on A/EEG. However, two of the eight had seizure discharges at other times, not associated with any clinical manifestation. Seventy-four apnea spells, thought to be possible seizures, occurred in seven newborns. None was associated with discharges on A/EEG, but one of these newborns had 50 A/EEG discharges unrelated to apnea or other clinical manifestations.  相似文献   

5.
Vohora D  Pal SN  Pillai KK 《Life sciences》2000,66(22):PL297-PL301
The effect of selective histamine H3-receptor antagonist thioperamide was studied on PTZ-induced seizures in mice. Thioperamide significantly protected clonic seizures induced by PTZ in a dose-dependent manner. The effect of thioperamide was completely countered by pretreatment with R (alpha)-methylhistamine (RAMH), a selective H3-receptor agonist suggesting that the observed effect of thioperamide was elicited by histamine H3-receptors. RAMH alone did not significantly modify PTZ seizures. The findings are consistent with a role for the histaminergic neuronal system in seizures and suggest that H3-receptors may play an important role in modulating clonic seizures induced by PTZ in mice.  相似文献   

6.
The clinical features and management of theophylline-induced seizures are not well appreciated in spite of their unique aspects. These seizures tend to occur in neurologically intact patients and leave no or only minor neurologic sequelae if controlled early. They begin with focal motor seizures with or without secondary generalization and are followed by stupor or coma. They are responsive only to adjustment of theophylline dosage. Should the motor phenomenon persist, it takes the form of epilepsia partialis continua. Extensive workup for a structural brain lesion may be unrewarding. The electroencephalogram typically shows periodic lateralized epileptiform discharges, which may provide a diagnostic clue.  相似文献   

7.
Mechanisms underlying seizure generation are traditionally thought to act over seconds to minutes before clinical seizure onset. We analyzed continuous 3- to 14-day intracranial EEG recordings from five patients with mesial temporal lobe epilepsy obtained during evaluation for epilepsy surgery. We found localized quantitative EEG changes identifying prolonged bursts of complex epileptiform discharges that became more prevalent 7 hr before seizures and highly localized subclinical seizure-like activity that became more frequent 2 hr prior to seizure onset. Accumulated energy increased in the 50 min before seizure onset, compared to baseline. These observations, from a small number of patients, suggest that epileptic seizures may begin as a cascade of electrophysiological events that evolve over hours and that quantitative measures of preseizure electrical activity could possibly be used to predict seizures far in advance of clinical onset.  相似文献   

8.
In this paper we present a detailed theoretical analysis of the onset of spike-wave activity in a model of human electroencephalogram (EEG) activity, relating this to clinical recordings from patients with absence seizures. We present a complete explanation of the transition from inter-ictal activity to spike and wave using a combination of bifurcation theory, numerical continuation and techniques for detecting the occurrence of inflection points in systems of delay differential equations (DDEs). We demonstrate that the initial transition to oscillatory behaviour occurs as a result of a Hopf bifurcation, whereas the addition of spikes arises as a result of an inflection point of the vector field. Strikingly these findings are consistent with EEG data recorded from patients with absence seizures and we present a discussion of the clinical significance of these results, suggesting potential new techniques for detection and anticipation of seizures.  相似文献   

9.
Sleep-wake disturbances are common in epilepsy, yet the potential adverse effect of seizures on sleep is not well characterized. Genetically epilepsy-prone rats (GEPRs) are a well-studied model of genetic susceptibility to audiogenic seizures. To assess their suitability for investigating relationships between seizures and disordered sleep, we characterized the sleep, activity, and tempera ture patterns of 2 GEPR strains (designated 3 and 9) and Sprague-Dawley (SD) rats in the basal state, after forced wakefulness, and after exposure to sound-induced seizures at light onset and dark onset. Because of observed differences in rapid-eye-movement sleep (REMS), we also assessed serum levels of prolactin, which is implicated in REMS regulation. The data reveal that under basal conditions, the GEPR3 strain shows less SWS and REMS, higher core temperatures, and higher serum prolactin concentrations than do GEPR9 and SD strains. All 3 strains respond similarly to enforced sleep loss. Seizures induced at light onset delay the onset of SWS in both GEPR strains. Seizures induced at dark onset do not significantly alter sleep. Genotype assessment indicates that although both GEPR strains are inbred (that is, homozygous at 107 genetic markers), they differ from each other at 74 of 107 loci. Differences in basal sleep, temperature, and prolactin between GEPR3 and GEPR9 strains suggest different homeostatic regulation of these functions. Our detection of concurrent alterations in sleep, temperature, and prolactin in these 2 GEPR strains implicates the hypothalamus as a likely site for anatomic or physiologic variation in the control of these homeostatic processes.  相似文献   

10.
Epilepsy is a common neurological disorder that occurs more frequently in children than in adults. The extent that prolonged seizure activity, i.e. status epilepticus (SE), and repeated, brief seizures affect neuronal structure and function in both the immature and mature brain has been the subject of increasing clinical and experimental research. Earlier studies suggest that seizure-induced effects in the immature brain compared with the adult brain are different. This is manifested as differences in neuronal vulnerability, cellular and synaptic reorganization and regenerative processes. The focus of this review is first to give a short overview of currently used experimental models of epilepsy in immature rats, and then discuss more thoroughly seizure-induced acute and sub-acute cellular and molecular alterations, highlight the contribution of inflammatory-like reactions and intracellular cytoskeleton to the insult, and reveal changes in the structure and function of inhibitory GABA(A) and excitatory glutamate receptors. The role of seizure-activated reparative, plastic processes, synaptic remodelling, neurogenesis as well as the long-term consequences of seizures are briefly outlined. The main emphasis is put on studies carried out in experimental animals, and the focus of interest is the hippocampus, the brain area of great vulnerability in epilepsy. In vitro studies are discussed only to limited extent. Collectively, recent studies suggest that the deleterious effects of seizures may not solely be a consequence of neuronal damage and loss per se, but could be due to the fact that seizures interfere with the highly regulated developmental processes in the immature brain.  相似文献   

11.
Nerve agents and some pesticides such as diisopropylfluorophosphate (DFP) cause neurotoxic manifestations that include seizures and status epilepticus (SE), which are potentially lethal and carry long-term neurological morbidity. Current antidotes for organophosphate (OP) intoxication include atropine, 2-PAM and diazepam (a benzodiazepine for treating seizures and SE). There is some evidence for partial or complete loss of diazepam anticonvulsant efficacy when given 30?min or later after exposure to an OP; this condition is known as refractory SE. Effective therapies for OP-induced SE are lacking and it is unclear why current therapies do not work. In this study, we investigated the time-dependent efficacy of diazepam in the nerve agent surrogate DFP model of OP intoxication on seizure suppression and neuroprotection in rats, following an early and late therapy. Diazepam (5?mg/kg, IM) controlled seizures when given 10?min after DFP exposure (“early”), but it was completely ineffective at 60 or 120?min (“late”) after DFP. DFP-induced neuronal injury, neuroinflammation, and neurodegeneration of principal cells and GABAergic interneurons were significantly reduced by early but not late therapy. These findings demonstrate that diazepam failed to control seizures, SE and neuronal injury when given 60?min or later after DFP exposure, confirming the benzodiazepine-refractory SE and brain damage after OP intoxication. In addition, this study indicates that degeneration of inhibitory interneurons and inflammatory glial activation are potential mechanisms underlying these morbid outcomes of OP intoxication. Therefore, novel anticonvulsant and neuroprotectant antidotes, superior to benzodiazepines, are desperately needed for controlling nerve agent-induced SE and brain injury.  相似文献   

12.
《BMJ (Clinical research ed.)》1993,306(6889):1374-1378
OBJECTIVES--To develop and test a prognostic index for the recurrence of seizures after a minimum remission of seizures of two years in people with a history of epilepsy. DESIGN--Information from a large prospective randomised study of withdrawal of antiepileptic drugs was used to identify clinical and treatment factors of prognostic importance in determining the recurrence of seizures. A split sample approach was used to test the internal validity of predictions made on the basis of identified prognostic factors. SETTING--Centres in six European countries. MAIN OUTCOME MEASURES--Comparison of predicted and observed rates of recurrence of seizure. SUBJECTS--1013 patients randomised to the Medical Research Council study for antiepileptic drug withdrawal. RESULTS--The Cox proportional hazards model identified several factors that increased the risk of seizures recurring. These included being 16 years or older; taking more than one antiepileptic drug; experiencing seizures after starting antiepileptic drug treatment; a history of primary or secondarily generalised tonic-clonic seizures; a history of myoclonic seizures; and having an abnormal electroencephalogram. The risks of seizures recurring decreased with increasing time without seizures. The model allowed estimation of the risk of seizures recurring in the next one and two years under the policies of continued antiepileptic drug treatment and slow withdrawal of drugs. Split sample validation suggested that the model was well calibrated. CONCLUSION--The model is currently the best available aid for counselling the many patients in the community with epilepsy currently in remission who seek advice about the risks of seizures recurring if they stop antiepileptic drug treatment. The model requires validation in a broad population of patients, and such studies are in progress.  相似文献   

13.
We retrospectively evaluated a set of 205 children with autism and compared it to the partial sub-set of 71 (34.6%) children with a history of regression. From 71 children with regression, signs of epileptic processes were present in 43 (60.6%), 28 (65.12%) suffered clinical epileptic seizures, and 15 (34.9%) just had an epileptiform abnormality on the EEG. In our analysis, autistic regression is substantially more associated with epileptic process symptoms than in children with autism and no history of regression. More than 90% of children with a history of regression also show IQ < 70 and reduced functionality. Functionality and IQ further worsens with the occurrence of epileptic seizures (98% of children with regression and epilepsy have IQ < 70). We proved that low IQ and reduced functionality significantly correlate rather with epileptic seizures than just sub-clinical epileptiform abnormality on EEG. Clinical epileptic seizures associated with regression significantly influence the age of regression and its clinical type. The age of regression is higher compared to children with regression without epileptic seizures (in median: 35 months of age in patients with seizures while only 24 months in other patients). Patients with seizures revealed regression after 24th months of age in 68% of cases, while patients without seizures only in 27%. However, coincidence with epilepsy also increased the occurrence of regression before the 18th month of age (23% of patients), while only 4% of patients without epilepsy revealed regression before the 18th month. Epileptic seizures are significantly associated especially with behaviour regression rather than speech regression or regression in both behaviour and speech. Also epileptic seizures diagnosed before correct diagnosis of autism were significantly associated with delayed regression (both behavioural and speech regression).  相似文献   

14.
Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution.  相似文献   

15.
癫痫发作的预测是近年来在临床医学和神经系统科学研究领域中备受关注的问题。如果癫痫发作能够被可靠地预测,则可以提前采取有效的临床预防措施,从而能较大程度地改善癫痫患者的生活质量。文章提出了一种基于二阶C0复杂度的预测算法用于预测癫痫发作。该算法通过分析癫痫患者颅内脑电信号的二阶C0复杂度,利用发作前期复杂度曲线的变化特征预测癫痫发作。作者运用该算法对21组癫痫病人87次发作的临床颅内脑电数据和4组大鼠4次发作的颅内脑电数据进行分析计算,预测准确率分别为94.3%和100%。实验结果表明该算法可以有效地预测癫痫发作,具有潜在的重要临床应用价值。  相似文献   

16.
A series of 140 previously untreated patients with tonic-clonic or partial seizures were randomised to receive either phenytoin or sodium valproate. There was no difference between the treatment groups in pretreatment variables that might influence outcome. Sodium valproate and phenytoin in the treatment of tonic-clonic or partial seizures showed no difference in efficacy as regards time to two year remission or time to first seizure. When the possible prognostic factors were studied, including history and results of clinical examination and investigations before treatment; the only factor which influenced the proportion of patients achieving two year remission was type of seizure. Patients with a clinical history of partial seizures did significantly less well than those with a history of tonic-clonic seizures only. This study showed no major difference in efficacy between sodium valproate and phenytoin in adults with recent onset of epilepsy, irrespective of the type of seizures that the patient suffered.  相似文献   

17.
Epilepsy is a common and heterogeneous neurological disorder arising from biochemical and molecular events that are incompletely understood. To effectively manage epilepsies, it is important to understand the mechanisms underlying both seizure-induced brain damage as well as seizure initiation. Oxidative stress is emerging as a mechanism that may play an important role in the etiology of seizure-induced neuronal death. Conversely, epileptic seizures are a common occurrence in mitochondrial diseases arising from defects in oxidative phosphorylation. This review focuses on the emerging role of oxidative stress and mitochondrial dysfunction both as a consequence and cause of epileptic seizures.  相似文献   

18.
Continuous non-invasive electroencephalographic monitoring is an essential technique for critical care patients as it shows directly and indirectly the patient’s brain activity and makes it possible to relate it with findings in the clinical status. It is highly sensitive, although its specificity is lower, so they can show alterations of the state of consciousness without clarifying the etiology.Continuous electroencephalographic recording in patients with altered levels of consciousness, seizures, and convulsive and non-convulsive status epilepticus has been increasing in recent years as real-time feedback of the cerebral function shows evolution changes and allows for the identification of electric and subclinical epileptic seizures that are highly important since they do not have clinical correlations.These findings in electroencephalographic monitoring also help to modify pharmacological and antiseizure treatments. For practitioners, they are advantageous when making timely decisions that impact the prognosis of the patient.  相似文献   

19.
Abstract: The present study was undertaken to explore how transient ischemia in rats alters cerebral metabolic capacity and how postischemic metabolism and blood flow are coupled during intense activation. After 6 h of recovery following transient forebrain ischemia 15 min in duration, bicuculline seizures were induced, and brains were frozen in situ after 0.5 or 5 min of seizure discharge. At these times, levels of labile tissue metabolites were measured, whereas the cerebral metabolic rate for oxygen (CMRO2) and cerebral blood flow (CBF) were measured after 5 min of seizure activity. After 6 h of recovery, and before seizures, animals had a 40–50% reduction in CMRO2, and CBF. However, because CMRO2 rose threefold and CBF fivefold during seizures, CMRO2 and CBF during seizures were similar in control and postischemic rats. Changes in labile metabolites due to the preceding ischemia encompassed an increased phosphocreatine/ creatine ratio, as well as raised glucose and glycogen concentrations. Seizures gave rise to minimal metabolic perturbation, essentially comprising reduced glucose and glycogen contents and raised lactate concentrations. It is concluded that although transient ischemia leads to metabolic depression and a fall in CBF, the metabolic capacity of the tissue is retained, and drug-induced seizures lead to a coupled rise in metabolic rate and blood flow.  相似文献   

20.
In view of evidence indicating that endogenous opiate-like peptides have epileptiform effects, we examined the effect of the opiate antagonist naloxone on the kindling of seizures produced by repeated electrical stimulation of the amygdala or the caudate nucleus in rats. Naloxone had no effect on the threshold for local after-discharge in the two areas and failed to retard the rate of kindling of clinical seizures. These results suggest that an interaction of opiate-like peptides with central opiate receptors does not play any critical role in the kindling of seizures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号