首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The kinetics of the activation of Glu- and Lys-plasminogen by single-chain urokinase (sc urokinase) derived from the transformed human kidney cell line TCL-598 have been studied and compared with two-chain urokinase (tc urokinase). Plasminogen activation was determined by the increase in fluorescence polarization of fluorescein-labeled aprotinin, a high affinity inhibitor of plasmin. This methodology allows plasmin generation by sc urokinase to be measured in functional isolation, with no interfering generation of tc urokinase, sc urokinase was found to activate plasminogen to plasmin with apparent Michaelis-Menten-type kinetics. The Km for Glu-plasminogen activation was 47.7 microM, with a catalytic constant of 2.91 min-1. Lys-plasminogen activation by sc urokinase was characterized by a Km of 11.7 microM and a kcat of 5.60 min-1. The Km values for the activation of Glu- and Lys-plasminogen by tc urokinase were found to be similar to those for activation by sc urokinase (36.8 and 9.0 microM, respectively), but the catalytic constants were higher at 36.0 and 118 min-1, respectively. Therefore, on the basis of the catalytic efficiency kcat/Km, sc urokinase seems to have 16-27-fold lower activity than tc urokinase. This activity of sc urokinase is in contrast to its lack of activity against a low molecular weight peptide substrate (less than 0.2% of the activity of sc urokinase). The activation of sc urokinase to tc urokinase by plasmin was also characterized (Km = 3.0 microM, kcat = 105 min-1). Using these data, it was possible to calculate the theoretical rate of plasminogen activation by sc urokinase in the absence of aprotinin, when tc urokinase is generated by the action of plasmin. The calculated rate was in good agreement with that determined experimentally using the chromogenic substrate D-Val-Leu-Lys-p-nitroanilide. These data demonstrate that sc urokinase has properties which distinguish it from conventional serine protease zymogens. The lack of activity against low molecular weight peptide substrates demonstrates the inaccessibility of the substrate-binding pocket. However, there is a moderate activity against plasminogen, suggesting that plasminogen may be acting as both an effector and a substrate for sc urokinase.  相似文献   

2.
3.
The ability of macrophages to reach inflammatory loci is crucial in the function of cellular immunity. Invasive properties of macrophages may be due to the proteinase urokinase which binds to cell surface receptors, and thereby confers on macrophages the capacity for localized proteolysis of the interstitium. Here, we investigated the role of the macrophage-activating factors IFN-gamma, TNF-alpha, and granulocyte-macrophage-CSF and of urokinase on the expression of urokinase receptors by human cultured monocytes. IFN-gamma and TNF-alpha induced increased urokinase binding to human cultured monocytes in a time- and dose-dependent fashion. At optimal concentrations, IFN-gamma (200 U/ml) increased the number of receptors/cell from 14,000 to 64,000, TNF-alpha (50 U/ml) to 30,000, and combinations of IFN-gamma and TNF-alpha to 90,000. Granulocyte-macrophage-CSF had no effect. The enhanced urokinase binding is due to increased numbers of urokinase receptors and not an increased affinity of the receptor for urokinase. In the presence of urokinase during monocyte activation, IFN-gamma induced only 25,000 receptors/cell. However, urokinase does not inhibit increased receptor expression when the cells are activated with TNF-alpha. The effect of urokinase on induction of urokinase receptors by combinations of IFN-gamma and TNF-alpha varied with the dosage of TNF-alpha: A combination of IFN-gamma (200 U/ml) and TNF-alpha (15 U/ml) induced 38,000 receptors/cell in the presence and 90,000 receptors/cells in the absence of urokinase, whereas IFN-gamma (200 U/ml) and TNF-alpha (20 U/ml) induced 90,000 receptors/cell in the absence and presence of urokinase. These studies demonstrate that IFN-gamma, TNF-alpha, and urokinase collectively regulate the number of urokinase receptors on human monocytes. The induction of urokinase receptors may be responsible for increased invasiveness of the activated macrophage.  相似文献   

4.
We have previously reported that phosphorylation of human urokinase on Ser138/303 abolishes its catalytic-independent motogen and proadhesive abilities, whereas receptor binding is not affected. Here we show that substitution of the two relevant serines with glutamic acid residues impairs the ability of urokinase to mobilize a variety of human and mouse cell lines as well as human primary T lymphocytes. Accordingly, urokinase receptor-dependent signaling, leading to cytoskeletal rearrangements and paxillin re-distribution, does not occur in MCF-7 breast carcinoma cells exposed to 'phosphorylation-like' urokinase. Unlike the wild-type form, di-substituted urokinase is unable to induce the physical association of urokinase receptor with alphavbeta5 vitronectin receptor, which is required for MCF-7 urokinase-dependent cell migration. Finally, the di-substituted variant fails to activate p55fgr, a member of the Src tyrosine kinase family, which mediates cell migration and adhesion of U937 myelomonocytic cells. In conclusion, the finding that specific amino acid substitutions strongly interfere with the ability of urokinase to stimulate cell migration, and the associated intracellular events uncover a novel way to regulate urokinase receptor-dependent signaling.  相似文献   

5.
Proliferation of a human epidermal tumor cell line stimulated by urokinase   总被引:7,自引:0,他引:7  
Several tumor cells secrete significantly increased amounts of the plasminogen activator urokinase, a trypsinlike serine protease, whose biological function in tumor biology is unclear. In this study we report that cells of the human epidermal tumor cell line CCL 20.2 express about 80,000 high-affinity urokinase receptors per cell that bind active as well as diisopropylfluorophosphate-treated high-molecular-weight (HMW) urokinase. Low-molecular-weight (LMW) urokinase is not bound to the receptor. Occupation of these receptors by active HMW urokinase stimulates cell proliferation independently in the presence of plasminogen in the culture medium. LMW urokinase has again no effect on cell proliferation. Calculated on a molar basis, this effect is about 28% of that of epidermal growth factor. Active HMW urokinase might therefore provide an autocrine receptor-mediated growth-promoting mechanism for tumor cells similar to those described for other growth factors.  相似文献   

6.
Human urine urokinase [EC 3.4.21.31] was found to be inactivated by dithiothreitol (DTT) much more severely than by 2-mercaptoethanol at the same concentration on the basis of -SH groups. Removal of DTT by dialysis restored the activities of esterase toward acetyl-glycyl-L-lysine methyl ester, plasminogen activation, and amidase toward 7-(glutaryl-glycyl-L-arginine-amido)-4-methyl coumarin. But the restoration of amidase activity was much less than that of esterase activity. The addition of DTT mediated the conversion of high molecular weight urokinase to low molecular weight urokinase, releasing several peptides. This suggests that the urokinase consists of several polypeptides linked by disulfide bonds. The molecular weight of urokinase produced with DTT was smaller than that of low molecular weight urokinase obtained by autodigestion of high molecular weight urokinase. The autodigestion was also accompanied by liberation of some peptides. But, those peptides released on autodigestion of high molecular weight urokinase were different from those appearing in the presence of DTT.  相似文献   

7.
We show here that the interaction between the urokinase-type plasminogen activator and its receptor, which plays a critical role in cell invasion, is regulated by heparan sulfate present on the cell surface and in the extracellular matrix. Heparan sulfate oligomers showing a composition close to the dimeric repeats of heparin (glucosamine-NSO(3)(6-OSO(3))-iduronic acid(2-OSO(3))) n = 5 and n > 5, where iduronic acid may alternate with glucuronic acid, exhibit affinity for urokinase plasminogen activator and confer specificity on urokinase/urokinase receptor interaction. Cell surface clearance of heparan sulfate reduces the affinity of such interaction with a parallel decrease of specific urokinase binding in the presence of an unaltered expression of receptor. Transfection of human urokinase plasminogen activator receptor in normal Chinese hamster ovary fibroblasts and in Chinese hamster ovary cells defective for the synthesis of sulfated glycosaminoglycans results in specific urokinase/receptor interaction only in nondefective cells. Heparan sulfate/urokinase and receptor/urokinase interactions exhibit similar K(d) values. We concluded that heparan sulfate functions as an adaptor molecule that confers specificity on urokinase/receptor binding.  相似文献   

8.
Urokinase-related proteins were purified from 60-liter batches of human urine collected into the protease inhibitor aprotinin to prevent proteolytic degradation. Three homogeneous species were obtained by chromatography on zinc chelate-Sepharose, SP-Sephadex C-50, Sephadex G-100, benzamidine-Sepharose, and immunoadsorption on a murine anti-human urokinase monoclonal antibody. One urokinase-related protein with Mr 95,000 representing a complex of two-chain urokinase with an inhibitor accounts for about 70% of the total urokinase-related antigen in urine. Nucleophilic agents dissociate the complex into active two-chain urokinase and a protein with Mr 45,000-50,000 which is immunologically distinct from urokinase. Approximately 25% of the urinary urokinase-related antigen represents a single-chain molecule with Mr 54,000. This highly purified single-chain molecule was obtained with a yield of 5 micrograms/liter of urine. Only trace amounts (less than 5%) of the urokinase-related antigen were recovered as free two-chain urokinase. The urinary single-chain urokinase-related protein has no specific affinity for fibrin. It has a very low activity on Pyroglu-Gly-Arg-p-nitroanilide, a urokinase-specific synthetic substrate, but directly activates plasminogen following Michaelis-Menten kinetics with Km = 0.7 microM and kcat = 0.0011 S-1. The single-chain molecule is rapidly converted to active two-chain urokinase by plasmin. Active two-chain urinary urokinase has a very high amidolytic activity and activates plasminogen with Km = 60 microM and kcat = 1.4 S-1. It is concluded that the urokinase-related proteins in human urine consist of about 25% of single-chain urokinase (10-20 micrograms/liter) and of about 75% two-chain urokinase (40-50 micrograms/liter), the bulk of which is complexed to an inhibitor. Because even in freshly voided urine most of the urokinase-related antigen is already converted to two-chain urokinase, urine does not seem to be a suitable source for the large-scale purification of single-chain urokinase. In view of the very significant intrinsic plasminogen-activating properties of single-chain urokinase, it should not be considered to be a proenzyme form of urokinase. The dramatic differences of its kinetic constants from those of urokinase render the designation single-chain urokinase equally inadequate. Consequently, the designation "single-chain urokinase-type plasminogen activator" was recently adopted by the International Committee on Thrombosis and Haemostasis (Annual Meeting, San Diego, CA, July 13-14, 1985).  相似文献   

9.
To mimic the sequence spanning the primary site (the Lys158-Ile159 bond) cleaved by plasmin in its conversion of single-chain urokinase plasminogen activator (scuPA) to urokinase, we synthesized the peptide Cys(Acm)-Leu-Arg-Pro-Arg-Phe-Lys-Ile-Ile-Gly-Gly-Glu-Phe-Cys [Cys(Acm)scuPA(153-164)Cys]. Immunization of A/J mice with the Cys(Acm)scuPA(153-164)Cys peptide linked to hemocyanin, followed by somatic cell fusion with a myeloma cell line (SP2/0), yielded a monoclonal antibody (SCOOP1) that bound to single-chain urokinase but not to urokinase or plasmin-treated single-chain urokinase. SCOOP1 could discriminate between single-chain urokinase and urokinase by greater than three orders of magnitude. In a radioimmunoassay, Cys(Acm)scuPA(153-164)Cys completely inhibited SCOOP1 binding to single-chain urokinase, whereas an equimolar mixture of two heptapeptides comprising the amino terminal [Cys-scuPA(153-158)] and carboxy terminal [scuPA(159-164)Cys)] halves of the cleavage site peptide did not. Thus the epitope recognized by SCOOP1 includes the Lys158-Ile159 peptide bond.  相似文献   

10.
The effect of extracellular matrix composition on the location, amount, and activity of cell-associated urokinase-type plasminogen activator was tested using HT-1080 cells adherent to either fibronectin or vitronectin. Specific immunoprecipitation of newly synthesized urokinase indicated that cells adherent to fibronectin synthesized 2-3-fold more urokinase than cells adherent to vitronectin. Complexes of urokinase and plasminogen activator inhibitor type 1 (PAI-1) were detected in cell layers of vitronectin-adherent but not fibronectin-adherent cells. Inhibition of PAI-1 using a neutralizing monoclonal antibody resulted in a 3-fold increase in urokinase enzymatic activity on vitronectin adherent cells. Urokinase activity on fibronectin adherent cells was only slightly increased following PAI-1 neutralization. Examination of both HT-1080 and normal human fibroblast cells by immunofluorescent microscopy localized urokinase-type plasminogen activator to discrete, focal areas underneath cells adherent to vitronectin. Urokinase was not detectable by immunofluorescence on cells adherent to fibronectin. The addition of exogenous prourokinase to locate urokinase receptors on adherent HT-1080 cells indicated that the focal localization of cell-surface urokinase resulted from the clustering of urokinase receptors following adhesion to vitronectin but not fibronectin-coated substrates. These results suggest that vitronectin can contribute to the control of cell-surface plasmin activity by regulating the synthesis of urokinase and directing the localization of urokinase receptors.  相似文献   

11.
In cultures of human foreskin fibroblasts most of the cell surface binding sites for 2-chain urokinase are masked and can be exposed by 10 min. incubation on ice at pH 2.5 (A. Bajpai and J.B. Baker (1985), Biochem. Biophys. Res. Commun.133, 475-482). Here we show that incubation on ice at pH 2.5 also releases from the cell surface a plasminogen activator that is similar to 2-chain urokinase in terms of its electrophoretic mobility, chromatographic behavior on concanavalin A-Sepharose or p-amino-benzamidine-Sepharose, and sensitivity to anti-urokinase antibody. Two observations suggest that the masked binding sites are sites occupied by this cell surface urokinase. First, glucocorticoid-treated cells, which lack cell surface urokinase, have a large number of urokinase binding sites but none that are masked. Second, the extraction of surface urokinase and the exposure of urokinase binding sites exhibit similar pH dependence. Both are complete at about pH 4.0.  相似文献   

12.
Heparin binding to the urokinase kringle domain.   总被引:5,自引:0,他引:5  
The binding of urokinase to immobilized heparin and dextran sulfate was studied using activity assays of the bound urokinase. The markedly higher binding observed with high M(r) urokinase compared to low M(r) urokinase indicated a role for the amino-terminal fragment (ATF). This was confirmed by the use of inactive truncated urokinase and monoclonal antibodies specific for the ATF in competition assays of urokinase binding. Antibody competition assays suggested a site in the kringle domain, and a synthetic decapeptide Arg-52-Trp-62 from the kringle sequence (kringle numbering convention) was competitive in assays of urokinase binding to dextran sulfate and heparin. Heparin binding to the urokinase kringle was unambiguously demonstrated via 1H NMR spectroscopy at 500 MHz. Effective equilibrium association constants (K(a)*) were determined for the interaction of isolated kringle fragment and low M(r) heparin at pH 7.2. The binding was strong in salt-free 2H2O (K(a)* approximately 57 mM-1) and remained significant in 0.15 M NaCl (K(a)* approximately 12 mM-1), supporting a potential physiological role for the interaction. This is the first demonstration of a function for the kringle domain of urokinase, and it suggests that while the classical kringle structure has specificity for lysine binding, there may also exist a class of kringles with affinity for polyanion binding.  相似文献   

13.
Placental microvillous membranes exhibited saturable binding of urokinase-type plasminogen activator with plateau achieved by 30 min at 4 degrees C and 10 min at 37 degrees C. The binding was essentially irreversible. The capacity was about 8 pmol urokinase per mg membrane protein. Half-maximal displacement of 125I-labelled urokinase was achieved with about 1.0 nM unlabelled urokinase when using 75 micrograms membrane protein/ml. 125I-labelled urokinase did not bind when treated with diisopropylfluorophosphate to block the catalytic activity. Single-chain urokinase (prourokinase), devoid of catalytic activity, did not bind. Catalytically active tissue-type plasminogen activator did compete with 125I-labelled urokinase for binding although less efficiently than urokinase. Binding activity remained in the 100,000 x g pellet after treatment of the membranes with 3 M KCl, alkaline stripping at pH 12 or extraction by the detergent Triton X-100. The binding was essentially blocked by antibodies against plasminogen activator inhibitor-type-2 (PAI-2). Sodium dodecyl sulfate polyacrylamide gel electrophoresis of solubilized membranes with bound 125I-labelled urokinase showed that the urokinase-PAI-2 complexes largely migrated in fractions corresponding to a very large Mr although no clearly defined peaks were observed. It is suggested that PAI-2 occurs in a form anchored to syncytiotrophoblast microvilli, possibly to the cytoskeleton.  相似文献   

14.
Urokinase, a serine protease, catalyzes the conversion of plasminogen to plasmin, which is responsible for dissolution of clots in blood vessels. It is an important drug for treatment of thromboembolic disease. Production of urokinase by mammalian cell culture has the following important steps: synthesis, regulation and secretion. Production and accumulation of this product in a bioreactor is a real challenge for biochemical engineers. Considerable information at molecular level needs to be understood for production of urokinase in order to correlate different parameters, which in turn can maximize the productivity. This information will be highlighted in this review. Moreover, urokinase production is a product-inhibited process. Therefore, in situ urokinase separation strategy is required to operate a bioreactor at its maximum urokinase formation rate. Integrated urokinase production and isolation processes developed recently will also be discussed briefly in this review.  相似文献   

15.
The relative fibrin-binding, fibrinolytic and fibrinogenolytic properties of single-chain pro-urokinase, an inactive proenzyme form of human urokinase purified from cultured human kidney cells, and urokinase were compared. The affinity of single-chain pro-urokinase for fibrin was much higher than that of urokinase. In Vitro thrombolytic studies showed that single-chain pro-urokinase is approximately three times more potent in fibrinolysis than urokinase and that it does not degrade fibrinogen in the plasma at a concentration, at which complete plasma clot lysis takes place; whereas, urokinase extensively degrades the fibrinogen in the plasma. These specific, potent thrombolytic properties of single-chain pro-urokinase seem to be due to its high affinity for fibrin and to its conversion from the inactive single-chain form to the active two-chain form on the thrombus by the catalytic amount of plasmin generated during coagulation. This single-chain pro-urokinase obtained from human kidney cells by tissue culture should prove advantageous than urokinase in thrombolytic therapy.  相似文献   

16.
Isolation of urokinase by affinity ultrafiltration   总被引:4,自引:0,他引:4  
A water-soluble, ligand-bound polymer has been synthesized for the purpose of isolation of urokinase, an important plasminogen activator. The affinity polymer was formed by copolymerizing N-acryloyl-m-aminobenza-midine and acrylamide in the absence of oxygen. An affinity ultrafiltration process was then developed for isolating urokinase from an artificial solution containing peroxidase and urokinase and from a crude urine source. The process yields were determined to be 86% and 49%, respectively. The recovered urokinase exhibited a specfic activity close to that of the highest commercial grade. This article also presents a new technique for assaying urokinase by coupling plasminogen with L-benzoyl arginine-p-nitroanilide (L-BAPNA), an inexpensive chromogenic substrate.  相似文献   

17.
Since c-src overexpression increases colonic cell invasiveness and because both Src activity and urokinase receptor protein are elevated in invasive colon cancers, the present study was undertaken: 1) to determine if a constitutively active Src regulates urokinase receptor expression and 2) to identify required cis-elements and trans-acting factors. SW480 colon cancer cells transfected with an expression plasmid (c-srcY527F) encoding a constitutively active Src protein manifested increased urokinase receptor gene expression and Src activity. Treatment of the src transfectants with a Src-inhibitor (PD173955) reduced urokinase receptor protein levels and laminin degradation. Inasmuch as we recently implicated an upstream region of the urokinase receptor promoter (-152/-135) in constitutive urokinase receptor expression, we determined its role for the induction by src. Whereas the activity of a CAT reporter driven by this region was stimulated by c-srcY527F, the u-PAR promoter mutated at the Sp1-binding motif in the -152/-135 region was not. Nuclear extracts from the src transfectants demonstrated increased Sp1 binding to region -152/-135 compared with those from SW480 cells. Finally, endogenous urokinase receptor protein amounts in 10 colon cancers and corresponding normal colon correlated with Src specific activity. These data suggest that urokinase receptor gene expression is regulated by Src partly via increased Sp1 binding.  相似文献   

18.
When the plasminogen activator urokinase was radioiodinated and incubated at 40 ng/ml in medium conditioned by human foreskin (HF) cells, within 30 min over 80% of the added plasminogen activator was complexed to cell-released protease nexin (PN). The urokinase complexed to PN had little if any activity. Incubation of purified PN with urokinase confirmed that PN is an inhibitor of this plasminogen activator. However, a widely used plasminogen-dependent fibrinolysis assay for plasminogen activator indicated that abundant endogenous plasminogen activator activity co-existed with PN in HF cell-conditioned medium. The source of this activity was electrophoretically and immunologically indistinguishable from urokinase. Furthermore, gel exclusion chromatography showed that about 90% of the urokinase antigen detected in conditioned medium had a molecular weight similar to that of free active urokinase. These paradoxical findings are resolved by evidence that this "PN-resistant urokinase-like" plasminogen activator is actually urokinase proenzyme that is activated by plasmin or conditions in the fibrinolysis assay for plasminogen activator. It is shown that the activated form of HF cell plasminogen activator is sensitive to inhibition by PN. PN may thus be an important component in the cellular regulation of endogenous plasminogen activator activity.  相似文献   

19.
The urokinase receptor is a multi-functional protein that plays a central role in cell surface plasminogen activation, cell migration, and cell adhesion. We previously demonstrated that high affinity peptide ligands for the urokinase receptor, which are urokinase competitors, can be obtained from a 15mer peptide library (Goodson et al., 1994). In order to probe for additional urokinase receptor binding sites we affinity selected the same bacteriophage library on complexes of soluble urokinase receptor (suPAR) and the receptor binding domain of urokinase, residues 1-48 (uPA1-48). Bacteriophage were isolated which bound to suPAR and suPAR:uPA1-48 complexes with high yield. The peptide sequences encoded by these bacteriophage were distinct from those obtained previously on urokinase receptor expressing cells, and comprise two groups based upon effects on su-PAR:1-anilino-8-napthalene sulfonate (ANS) fluorescence, and vitronectin binding competition. Alanine scanning mutagensis of the soluble peptides was used to define minimal regions and key residues for suPAR binding by competition with the parent bacteriophage. A comparison of these results with sequences of domains of both vitronectin and integrin alpha-chains, which have been reported to be important for urokinase receptor binding, suggests that the homology with the peptide sequences selected is functionally significant.  相似文献   

20.
The oral administration of the thrombolytic agent urokinase was studied. Its intestinal absorption was demonstrated in dogs by the observation of a prolonged urokinase activity in plasma with a concomitant lytic effect on artificial thrombi after intraduodenal administration. In situ intestine-liver perfusion experiments in dogs revealed that a plasminogen activator, distinct from the administered urokinase--thus presumed to be a tissue plasminogen activator--was liberated into the circulation in association with intestinal absorption of urokinase. Its absorption in men was demonstrated in a cross-over double blind study of oral urokinase on healthy subjects. On the basis of these results a double blind clinical trial of oral urokinase was performed on 101 patients with cerebral thrombosis. The results showed the usefulness of urokinase treatment, particularly in the early phase after the onset of stroke. The clinical effect was influenced by the plasma plasminogen level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号