首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Rescue of measles viruses from cloned DNA.   总被引:30,自引:3,他引:27       下载免费PDF全文
A system has been established allowing the rescue of replicating measles viruses (MVs) from cloned DNA. On one hand, plasmids were constructed from which MV antigenomic RNAs with the correct termini are transcribed by phage T7 RNA polymerase. On the other hand, helper cells derived from the human embryonic kidney 293 cell line were generated constitutively expressing T7 RNA polymerase together with MV nucleocapsid protein and phosphoprotein. Simultaneous transfection of the helper cells with the MV antigenomic plasmid and with a plasmid encoding the MV polymerase under direction of a T7 promoter led to formation of syncytia from which MVs were easily recovered. A genetic tag comprising three nucleotide changes was present in the progeny virus. As a first application of reverse genetics, a segment of 504 nucleotides from the 5' non-coding region of the fusion gene was deleted, leading to an MV variant whose replication behaviour in Vero cells was indistinguishable from that of the laboratory Edmonston B strain. Since no helper virus is involved, this system, in principle, should be applicable to the rescue of any member of the large virus order Mononegavirales, i.e. viruses with a nonsegmented negative-strand RNA genome.  相似文献   

5.
Infectious measles virus from cloned cDNA.   总被引:12,自引:1,他引:11  
  相似文献   

6.
7.
Measles is a highly contagious disease currently responsible for over one million childhood deaths, particularly in the developing world. Since alpha/beta interferons (IFNs) are pivotal players both in nonspecific antiviral immunity and in specific cellular responses, their induction or suppression by measles virus (MV) could influence the outcome of a viral infection. In this study we compare the IFN induction and sensitivity of laboratory-passaged attenuated MV strains Edmonston and Moraten with those of recent wild-type viruses isolated and passaged solely on human peripheral blood mononuclear cells (PBMC) or on the B958 marmoset B-cell line. We report that two PBMC-grown wild-type measles isolates and two B958-grown strains of MV induce 10- to 80-fold-lower production of IFN by phytohemagglutinin-stimulated peripheral blood lymphocytes (PBL) compared to Edmonston and Moraten strains of measles. Preinfection of PBL with these non-IFN-inducing MV isolates prevents Edmonston-induced but not double-stranded-RNA-induced IFN production. This suggests that the wild-type viruses can actively inhibit Edmonston-induced IFN synthesis and that this is not occurring by double-stranded RNA. Furthermore, the wild-type MV is more sensitive than Edmonston MV to the effect of IFN. MV is thus able to suppress the synthesis of the earliest mediator of antiviral immunity, IFN-alpha/beta. This could have important implications in the virulence and spread of MV.  相似文献   

8.
We studied five patients with SSPE during a 10-year period (1994-2004). The first clinical symptoms developed at the age of 5-11 years. All patients were vaccinated regularly against measles according to the official immunization schedule. One patient had measles at the age of 18 months. Two of them had a history of morbilliform rash (unrecognized measles) at the age of six and seven months, respectively. In two patients, with no history of measles before vaccination the disease started after varicella infection. Using complement-fixation (F) test and EIA, antibodies to measles virus (MV) were detected in the CSF and sera of all patients. The CF-antibody titers ranged from 1:1024 to 1:65536 in sera and from 1:16 to 1:128 in CSF samples. MV antigen was detected in brain imprints using IFA in two patients. Electron microscopic analysis revealed intranuclear viral inclusions (MV nucleocapsids). Using RT-PCR, viral RNA was found in both patients. Nucleotide sequence analysis showed that the viruses found in the brain tissue belonged to the wild-type MV D6 genotype [7].  相似文献   

9.
10.
Immunosuppression induced by measles virus (MV) is associated with unresponsiveness of peripheral blood lymphocytes (PBL) to mitogenic stimulation ex vivo and in vitro. In mixed lymphocyte cultures and in an experimental animal model, the expression of the MV glycoproteins on the surface of UV-inactivated MV particles, MV-infected cells, or cells transfected to coexpress the MV fusion (F) and the hemagglutinin (H) proteins was found to be necessary and sufficient for this phenomenon. We now show that MV fusion-inhibitory peptides do not interfere with the induction of immunosuppression in vitro, indicating that MV F-H-mediated fusion is essentially not involved in this process. Proteolytic cleavage of MV F(0) protein by cellular proteases, such as furin, into the F(1)-F(2) subunits is, however, an absolute requirement, since (i) the inhibitory activity of MV-infected BJAB cells was significantly impaired in the presence of a furin-inhibitory peptide and (ii) cells expressing or viruses containing uncleaved F(0) proteins revealed a strongly reduced inhibitory activity which was improved following trypsin treatment. The low inhibitory activity of effector structures containing mainly F(0) proteins was not due to an impaired F(0)-H interaction, since both surface expression and cocapping efficiencies were similar to those found with the authentic MV F and H proteins. These results indicate that the fusogenic activity of the MV F-H complexes can be uncoupled from their immunosuppressive activity and that the immunosuppressive domains of these proteins are exposed only after proteolytic activation of the MV F(0) protein.  相似文献   

11.
为了研究短发夹RNA(shRNA)介导的RNA干扰对麻疹病毒体外复制的抑制作用,构建靶向与麻疹病毒复制密切相关的宿主细胞基因Rab9 GTPase基因特异性shRNA表达载体,分别转染Vero-E6和B95a细胞后感染麻疹病毒Edmonston株和野生株。逆转录聚合酶链反应(RT-PCR)和免疫印迹技术(Western-blot)检测转染细胞内Rab9 GTPase基因表达水平;标准蚀斑试验测定麻疹病毒滴度。结果显示转染细胞内Rab9 GTPase mRNA和蛋白质的表达水平同对照组相比明显降低,标准蚀斑试验显示麻疹病毒的复制受到显著抑制,抑制率达到90%以上。结果表明载体介导的shRNAs能通过特异性下调Rab9 GTPase基因表达抑制麻疹病毒体外复制,Rab9 GTPase可能成为治疗麻疹病毒感染的RNA干扰靶。  相似文献   

12.
13.
Clinical, epidemiological and laboratory findings of four patients with subacute sclerosing panencephalitis (SSPE), diagnosed in Croatia in 2002, were examined. Patient age at disease onset ranged from 5-11 years. All patients were vaccinated regularly with MMR-vaccine. Two patients had a history of measles infection at the age of six and seven months, respectively. In the other two patients, the disease started immediately after the varicella infection. Complement fixing antibody titre to the measles virus (MV) ranged from 1:1024 to 1:65536 in serum, and from 1:16 to 1:128 in cerebrospinal fluid (CSF). In CSF, no antibodies to varicella-zoster virus were found. Brain tissue samples were obtained at autopsy from two patients. In one patient, electron microscopy demonstrated intranuclear viral inclusions (MV nucleocapsids). MV antigen was detected in brain imprints using IFA in both of them. Viral RNA was found in brain tissue samples only, while plasma, serum and CSF were negative. Nucleotide sequence analysis showed that the viruses detected in brain tissue belong to the wild-type MV D6 genotype.  相似文献   

14.
RNA viruses are responsible for major human diseases such as flu, bronchitis, dengue, Hepatitis C or measles. They also represent an emerging threat because of increased worldwide exchanges and human populations penetrating more and more natural ecosystems. A good example of such an emerging situation is chikungunya virus epidemics of 2005-2006 in the Indian Ocean. Recent progresses in our understanding of cellular pathways controlling viral replication suggest that compounds targeting host cell functions, rather than the virus itself, could inhibit a large panel of RNA viruses. Some broad-spectrum antiviral compounds have been identified with host target-oriented assays. However, measuring the inhibition of viral replication in cell cultures using reduction of cytopathic effects as a readout still represents a paramount screening strategy. Such functional screens have been greatly improved by the development of recombinant viruses expressing reporter enzymes capable of bioluminescence such as luciferase. In the present report, we detail a high-throughput screening pipeline, which combines recombinant measles and chikungunya viruses with cellular viability assays, to identify compounds with a broad-spectrum antiviral profile.  相似文献   

15.
Wild-type, lymphotropic strains of measles virus (MV) and tissue culture-adapted MV vaccine strains possess different cell tropisms. This observation has led to attempts to identify the viral receptors and to characterize the functions of the MV glycoproteins. We have functionally analyzed the interactions of MV hemagglutinin (H) and fusion (F) proteins of vaccine (Edmonston) and wild-type (WTF) strains in different combinations in transfected cells. Cell-cell fusion occurs when both Edmonston F and H proteins are expressed in HeLa or Vero cells. The expression of WTF glycoproteins in HeLa cells did not result in syncytia, yet they fused efficiently with cells of lymphocytic origin. To further investigate the role of the MV glycoproteins in virus cell entry and also the role of other viral proteins in cell tropism, we generated recombinant vaccine MVs containing one or both glycoproteins from WTF. These viruses were viable and grew similarly in lymphocytic cells. Recombinant viruses expressing the WTFH protein showed a restricted spread in HeLa cells but spread efficiently in Vero cells. Parental WTF remained restricted in both cell types. Therefore, not only differential receptor usage but also other cell-specific factors are important in determining MV cell tropism.  相似文献   

16.
Canine distemper virus (CDV) and measles virus (MV) cause severe illnesses in their respective hosts. The viruses display a characteristic cytopathic effect by forming syncytia in susceptible cells. For CDV, the proficiency of syncytium formation varies among different strains and correlates with the degree of viral attenuation. In this study, we examined the determinants for the differential fusogenicity of the wild-type CDV isolate 5804Han89 (CDV(5804)), the small- and large-plaque-forming variants of the CDV vaccine strain Onderstepoort (CDV(OS) and CDV(OL), respectively), and the MV vaccine strain Edmonston B (MV(Edm)). The cotransfection of different combinations of fusion (F) and hemagglutinin (H) genes in Vero cells indicated that the H protein is the main determinant of fusion efficiency. To verify the significance of this observation in the viral context, a reverse genetic system to generate recombinant CDVs was established. This system is based on a plasmid containing the full-length antigenomic sequence of CDV(OS). The coding regions of the H proteins of all CDV strains and MV(Edm) were introduced into the CDV and MV genetic backgrounds, and recombinant viruses rCDV-H(5804), rCDV-H(OL), rCDV-H(Edm), rMV-H(5804), rMV-H(OL), and rMV-H(OS) were recovered. Thus, the H proteins of the two morbilliviruses are interchangeable and fully functional in a heterologous complex. This is in contrast with the glycoproteins of other members of the family Paramyxoviridae, which do not function efficiently with heterologous partners. The fusogenicity, growth characteristics, and tropism of the recombinant viruses were examined and compared with those of the parental strains. All these characteristics were found to be predominantly mediated by the H protein regardless of the viral backbone used.  相似文献   

17.
18.
A stable temperature-sensitive mutant of measles virus (MV ts38) was used to study the mechanism of virus-mediated immune suppression of peripheral blood mononuclear cells in vitro. Both unstimulated and phytohemagglutinin-stimulated cultures released infectious virus at 32 degrees C, whereas no virus was released at 37 degrees C, although both viral RNA and viral proteins were synthesized. However, the response of the lymphoid cells to phytohemagglutinin, concanavalin A, and herpes simplex virus antigen was decreased in the presence of MV ts38 at 37 degrees C. The viability of infected cells was not diminished, therefore excluding cell death as a reason for immunosuppression. Interleukin 2 did not play a role in the inhibitory effect of MV ts38. Antibodies to alpha interferon partially reversed the inhibitory effect of the virus infection on lymphocyte mitogenesis, thus implying that alpha interferon plays a role in the immunosuppression. Depletion experiments indicated that adherent cells play a greater role in the measles virus-induced immunosuppression than nonadherent cells. However, monocyte maturation to macrophages had no effect on the degree of immunosuppression.  相似文献   

19.
为了鉴定抑制麻疹病毒体外复制的靶向Rab9GTPase基因效应性小干扰RNA(siRNA),根据。iRNA设计原则和Rab9GTPase基因的mRNA序列,设计并化学合成8对靶向Rab9GTPase基因的siRNAs和1对阴性对照siRNA,经脂质体法转染Vero—E6细胞株,转染10h后感染麻疹病毒Edmonston株。通过逆转录聚合酶链反应(RT—PCR)检测转染后细胞内Rab9GTPasemRNA水平;通过标准蚀斑试验检测麻疹病毒滴度。同对照组相比,8对靶向Rab9GTPase基因siRNAs中的2对(Rab9-4和Rab9—7),以时间和剂量依赖性的方式显著地抑制细胞内Rab9GTPasemRNA表达和麻疹病毒的复制(抑制率高达90%以上),其他的siRNAs对细胞内Rab9GTPasemRNA表达和麻疹病毒的复制的抑制性效应则低于50%。结果表明,Rab9-4和Rab9—7是体外抑制麻疹病毒复制的最有效的siRNAs,这些siRNAs靶序列能被用来深入研究RNA干扰治疗麻疹病毒感染的可能性。  相似文献   

20.
The cytoplasmic tail of the measles virus (MV) fusion (F) protein is often altered in viruses which spread through the brain of patients suffering from subacute sclerosing panencephalitis (SSPE). We transferred the coding regions of F tails from SSPE viruses in an MV genomic cDNA. Similarly, we constructed and transferred mutated tail-encoding regions of the other viral glycoprotein hemagglutinin (H) gene. From the mutated genomic cDNAs, we achieved rescue of viruses that harbor different alterations of the F tail, deletions in the membrane-distal half of the H tail, and combinations of these mutations. Viruses with alterations in any of the tails spread rapidly through the monolayer via enhanced cell-cell fusion. Double-tail mutants had even higher fusion competence but slightly decreased infectivity. Analysis of the protein composition of released mutant viral particles indicated that the tails are necessary for accurate virus envelope assembly and suggested a direct F tail-matrix (M) protein interaction. Since even tail-altered glycoproteins colocalized with M protein in intracellular patches, additional interactions may exist. We conclude that in MV infections, including SSPE, the glycoprotein tails are involved not only in virus envelope assembly but also in the control of virus-induced cell fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号