首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroejaculates from experimentally infected domestic cats were evaluated for the presence of feline immunodeficiency virus (FIV). Virus was isolated from cell-free seminal plasma and seminal cells by cocultivation with a feline interleukin-2-dependent CD4+ T-cell line, in which productive infection was demonstrated by syncytium formation and FIV gag p26 antigen secretion. In addition, an 868-bp segment of the FIV gag provirus gene was identified in cocultured cells by PCR and Southern analysis. A 582-bp fragment of the FIV gag provirus genome was detected by nested PCR and Southern analysis in nonfractionated seminal cells and in sperm purified by a swim-up procedure. This is the first report describing the detection of replication-competent FIV in cell-free and cell-associated forms in domestic cat semen.  相似文献   

2.
The objective of this study was to determine whether semen from male domestic cats infected with feline immunodeficiency virus (FIV) can transmit virus to females. Twelve inseminations were performed by an intrauterine laparoscopic technique with fresh or cryopreserved electroejaculates from asymptomatic males chronically infected with the NCSU1 strain of FIV. Of six inseminations performed with fresh semen, three resulted in infection of queens, as indicated by seroconversion, expression of FIV gag provirus in peripheral blood leukocytes, and reduced peripheral CD4+/CD8+ T-lymphocyte ratios. None of the six inseminates with thawed cryopreserved semen resulted in infection. Two infected queens and one uninfected queen became pregnant. Virus was not evident in the seven offspring. We conclude that FIV can be transmitted horizontally by artificial insemination with fresh semen.  相似文献   

3.
Previous studies using feline immunodeficiency virus (FIV) molecular clones lacking the putative transactivator gene (ORF-A/2) failed to address the issue of thymus pathogenesis or investigate the levels of viral replication in separate lymphoid compartments (Y. Inoshima, et al., J. Virol. 70:8518-8526, 1996; E. E. Sparger, et al., Virology 205:546-553, 1994). Using a highly pathogenic molecular clone of FIV, JSY3, and an ORF-A/2-deficient mutant, JSY3DeltaORF-A/2, we compared viral replication and the extent of thymic dysfunction as measured by the formation of lymphoid follicles and alteration of the thymocyte subsets. Viral replication was reduced in JSY3DeltaORF-A/2-infected cats as measured by lymphocyte coculture, immunohistochemistry, and quantitative PCR. Cell-associated viral load measured by lymphocyte coculture varied in a tissue-dependent manner with replication highest in lymphocytes isolated from the thymus, lower in those from the peripheral blood, and lowest in those from lymph node. Thymic proviral load and the number of viral p24 Gag-positive cells within the thymus detected by immunohistochemistry were also reduced. In addition, the onset of a reduced peripheral blood CD4/CD8 ratio was delayed in JSY3DeltaORF-A/2-infected cats. The formation and extent of thymic lymphoid follicular hyperplasia were similar in JSY3 and JSY3DeltaORF-A/2-infected cats as measured by anticytokeratin immunohistochemistry and flow cytometry for percent pan T-negative, immunoglobulin G-positive cells within the thymus. In contrast, comparison of thymocyte subpopulations demonstrated a reduced expansion of single-positive CD4(-) CD8(+) thymocytes in JSY3DeltaORF-A/2-infected cats. Level of viral replication, therefore, may not correlate with the formation of thymic lymphoid follicles but may correlate with the expansion of the single-positive CD4(-) CD8(+) thymocyte subpopulation.  相似文献   

4.
Sera from feline immunodeficiency virus (FIV)-infected cats exhibited extremely low levels of neutralizing antibodies against virus passaged a few times in vitro (low passage), when residual infectivity was assayed in the CD3+ CD4- CD8- MBM lymphoid cell line or mitogen-activated peripheral blood mononuclear cells. By sharp contrast, elevated titers of highly efficient neutralizing activity against FIV were measured, by use of high-passage virus, in assays on either the fibroblastoid CrFK or MBM cell line. However, high-passage virus behaved the same as low-passage virus after one in vivo passage in a specific-pathogen-free cat and reisolation. Subneutralizing concentrations of infected cat sera enhanced the production of low-passage virus by MBM cells, an effect not seen with high-passage virus in CrFK cells. These qualitative and quantitative discrepancies could not be attributed to differences in the amount of immunoreactive viral material, to the amount of infectious virus present in the viral stocks, or to the presence of anti-cell antibodies. The observed effects were most likely due to the different passage history of the viral preparations used. The observation that neutralizing antibodies detected with high-passage virus were broadly cross-reactive in assays with CrFK cells but isolate specific in MBM cells suggests also that the cell substrate can influence the result of FIV neutralization assays. This possibility could not be tested directly because FIV adapted to grow in CrFK cells had little infectivity for lymphoid cells and vice versa. In vitro exposure to infected cat sera had little or no effect on the ability of in vivo-passaged FIV to infect cats. These data reveal no obvious relationship between titers against high-passage virus and ability to block infectivity of FIV in cats and suggest caution in the use of such assays to measure vaccine efficacy. In conclusion, by contrast with what has been previously reported for the use of CrFK cells and high-passage virus, both natural and experimental infections of cats with FIV generate poor neutralizing antibody responses with regard to in vivo protection.  相似文献   

5.
Replication-competent molecular clones of feline immunodeficiency virus (FIV) were isolated directly from the DNA of bone marrow cells of a naturally FIV-infected cat. After transfection in a feline kidney cell line (CrFK) and subsequent cocultivation with peripheral blood mononuclear cells (PBMC), the viral progeny of the clones was infectious for PBMC but not for CrFK cells. PBMC infected with these clones showed syncytium formation, a decrease in cell viability, and gradual loss of CD4+ cells. The restriction maps of these clones differed from those obtained for previously described molecular clones of FIV derived from cats in the United States. The predicted amino acid sequence similarity of the envelope genes of the two clones was 99.3%, whereas the similarities of the sequences of the clones to those of two molecular clones from the United States, Petaluma and PPR, were 86 and 88%, respectively. Most of the differences between the amino acid sequences of the two clones and those of the clones from the United States were found in five different hypervariable (HV) regions, HV-1 through HV-5. The viral progeny of one of these clones was inoculated into two specific-pathogen-free cats. The animals seroconverted, and the virus could be reisolated from their PBMC.  相似文献   

6.
We have derived and characterized a highly pathogenic molecular isolate of feline immunodeficiency virus subtype C (FIV-C) CABCpady00C. Clone FIV-C36 was obtained by lambda cloning from cats that developed severe immunodeficiency disease when infected with CABCpady00C (Abbotsford, British Columbia, Canada). Clone FIV-C36 Env is 96% identical to the noninfectious FIV-C isolate sequence deposited in GenBank (FIV-Cgb; GenBank accession number AF474246) (A. Harmache et al.) but is much more divergent in Env when compared to the subgroup A clones Petaluma (34TF10) and FIV-PPR (76 and 78% divergence, respectively). Clone FIV-C36 was able to infect freshly isolated feline peripheral blood mononuclear cells and primary T-cell lines but failed to productively infect CrFK cells, as is typical of FIV field isolates. Two-week-old specific-pathogen-free cats infected with FIV-C36 tissue culture supernatant became PCR positive and developed severe acute immunodeficiency disease similar to that caused by the uncloned CABCpady00C parent. At 4 to 5 weeks postinfection (PI), 3 of 4 animals developed CD4(+)-T-cell depletion, fever, weight loss, diarrhea, and opportunistic infections, including ulcerative stomatitis and tonsillitis associated with abundant bacterial growth, pneumonia, and pyelonephritis, requiring euthanasia. Histopathology confirmed severe thymic and systemic lymphoid depletion. Interestingly, the dam also became infected with a high viral load at 5 weeks PI of the kittens and developed a similar disease syndrome, requiring euthanasia at 11 weeks PI of the kittens. This constitutes the first report of a replication-competent, infectious, and pathogenic molecular clone of FIV-C. Clone FIV-C36 will facilitate dissection of the pathogenic determinants of FIV.  相似文献   

7.
Independent studies have demonstrated different cell tropisms for molecular clones of feline immunodeficiency virus (FIV). In this report, we examined three clones, FIV-pF34, FIV-14, and FIV-pPPR, for replication in Crandell feline kidney (CrFK) cells, feline peripheral blood mononuclear cells (PBMC), and feline macrophage cultures. Importantly, cell tropism for these three clones was also examined in vivo. FIV-pF34 replication was efficient in CrFK cells but severely restricted in PBMC, whereas replication of FIV-pPPR was vigorous in PBMC but severely restricted in CrFK cells. FIV-14 replication was productive in both CrFK cells and PBMC. Interestingly, all three molecular clones replicated with similar efficiencies in primary feline monocyte-derived macrophages. In vivo, FIV-pF34 proved least efficient for establishing persistent infection, and proviral DNA when detectable, was localized predominately to nonlymphoid cell populations (macrophages). FIV-pPPR proved most efficient for induction of a persistent viremia in vivo, and proviral DNA was localized predominately in CD4(+) and CD8(+) lymphocyte subsets. FIV-14 inoculation of cats resulted in an infection characterized by seroconversion and localization of proviral DNA in CD4(+) lymphocytes only. Results of this study on diverse FIV molecular clones revealed that in vitro replication efficiency of an FIV isolate in PBMC directly correlated with replication efficiency in vivo, whereas proficiency for replication in macrophages in vitro was not predictive for replication potential in vivo. Also, infection of both CD4(+) and CD8(+) lymphocyte subsets was associated with higher virus load in vivo. Results of the studies on these three FIV clones, which exhibited differential cell tropism, indicated a correlation between in vitro and in vivo cell tropism and virus replication.  相似文献   

8.
The feline thymus is a target organ and site of viral replication during the acute stage of feline immunodeficiency virus (FIV) infection. This was demonstrated by histologic, immunohistologic, flow cytometric, and virologic tests. Thymic lesions developed after 28 days postinoculation (p.i.) and included thymitis, premature cortical involution, and medullary B-cell hyperplasia with germinal center formation and epithelial distortion. Alterations in thymocyte subsets also developed. Fewer CD4+ CD8- cells were detected at 28 days p.i., while an increase in CD4- CD8+ cells resulted in an inversion of the thymic CD4/CD8 ratio of single-positive cells, similar to events in peripheral blood. Provirus was present in all thymocyte subpopulations including cortical CD1(hi), CD1(lo), and B cells. The CD1(hi) thymocyte proviral burden increased markedly after 56 days p.i., coincident with the presence of infiltrating inflammatory cells. Increased levels of provirus in the CD1(lo) thymocyte subpopulation were detected prior to 56 days p.i. This was likely due to inclusion of infected infiltrating inflammatory cells which could not be differentiated from mature, medullary thymocytes. Proviral levels in B cells also increased from 70 days p.i. Morphologic alterations, productive viral infection, and altered thymocyte subpopulations suggest that thymic function is compromised, thus contributing to the inability of FIV-infected cats to replenish the peripheral T-cell pool.  相似文献   

9.
The productive replication of human immunodeficiency virus type 1 (HIV-1) occurs exclusively in defined cells of human or chimpanzee origin, explaining why heterologous animal models for HIV replication, pathogenesis, vaccination, and therapy are not available. This lack of an animal model for HIV-1 studies prompted us to examine the susceptibility of feline cells in order to evaluate the cat (Felis catus) as an animal model for studying HIV-1. Here, we report that feline cell lines harbor multiple restrictions with respect to HIV-1 replication. The feline CD4 receptor does not permit virus infection. Feline T-cell lines MYA-1 and FeT-1C showed postentry restrictions resulting in low HIV-1 luciferase reporter activity and low expression of viral Gag-Pol proteins when pseudotyped vectors were used. Feline fibroblastic CrFK and KE-R cells, expressing human CD4 and CCR5, were very permissive for viral entry and HIV-long terminal repeat-driven expression but failed to support spreading infection. KE-R cells displayed a profound block with respect to release of HIV-1 particles. In contrast, CrFK cells allowed very efficient particle production; however, the CrFK cell-derived HIV-1 particles had low specific infectivity. We subsequently identified feline apolipoprotein B-editing catalytic polypeptide 3 (feAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity. CrFK cells express at least three different APOBEC3s: APOBEC3C, APOBEC3H, and APOBEC3CH. While the feAPOBEC3C did not significantly inhibit HIV-1, the feAPOBEC3H and feAPOBEC3CH induced G to A hypermutations of the viral cDNA and reduced the infectivity approximately 10- to approximately 40-fold.  相似文献   

10.
Within 6 months of infection with the Petaluma isolate of feline immunodeficiency virus, specific-pathogen-free domestic cats exhibited a decrease in the percentage and number of circulating CD4+ lymphocytes and in the CD4+/CD8+ T-cell ratio, along with a marginally significant depression of pokeweed mitogen-induced lymphocyte proliferation in vitro. There was no loss of responsiveness to concanavalin A during this stage, and the cats were capable of mounting a satisfactory antibody response to a T-dependent, synthetic polypeptide immunogen. The pokeweed mitogen response deficit became clearly demonstrable by 11 to 12 months postinfection. A decline in the lymphocyte proliferative response to concanavalin A and a diminished ability to mount an in vivo antibody response to the T-dependent immunogen evolved by 25 to 44 months postinfection. Virus infection did not affect the ability of cats to mount an antibody response to a T-independent synthetic polypeptide immunogen. These data indicate that feline immunodeficiency virus produces a slowly progressive deterioration of T-cell function but does not affect the ability of B cells to recognize and respond to a T-independent antigenic stimulus.  相似文献   

11.
To examine the roles of auxiliary genes and the AP-1 binding site in the long terminal repeat of feline immunodeficiency virus (FIV) in vivo, three mutant viruses, which are defective in the vif gene ([delta]vif), ORF-A gene (deltaORF-A), and AP-1 binding site (deltaAP-1), and wild-type virus as a positive control were separately inoculated into three specific-pathogen-free cats. These cats were assessed by measuring the number of proviral DNA copies in peripheral blood mononuclear cells (PBMCs), the CD4/CD8 ratio and antibody responses to FIV for 16 weeks and then examining histological changes at necropsy. Although viral DNAs were detected in PBMCs from all 12 cats to various degrees until 16 weeks postinoculation, no virus was recovered from PBMCs of cats infected with (delta)vif virus during the observation period. However, a very weak antibody response was induced in one cat infected with the (delta)vif virus. In contrast, despite the successful recovery of virus from both groups of cats infected with deltaORF-A and deltaAP-1 virus, antibody responses and decrease in the CD4/CD8 ratio in the groups were milder than those in cats infected with wild-type virus. Furthermore, the numbers of proviral DNA copies in PBMCs from the two groups were not able to reach the level in cats infected with wild-type virus during the observation period. From these results, we conclude that these mutant viruses are still infectious for cats but failed in efficient viral replication and suggest that these auxiliary genes and enhancer element are important or essential to full viral replication kinetics and presumably to full pathogenicity during the early stage of infection in vivo.  相似文献   

12.
A new provirus clone of feline leukemia virus (FeLV), which we named FeLV-A (Rickard) or FRA, was characterized with respect to viral interference group, host range, complete genome sequence, and in vivo pathogenicity in specific-pathogen-free newborn cats. The in vitro studies indicated the virus to be an ecotropic subgroup A FeLV with 98% nucleotide sequence homology to another FeLV-A clone (F6A/61E), which had also been fully sequenced previously. Since subgroup B polytropic FeLVs (FeLV-B) are known to arise via recombination between ecotropic FeLV-A and endogenous FeLV (enFeLV) env elements, the in vivo studies were conducted by direct intradermal inoculation of the FRA plasmid DNA so as to eliminate the possibility of coinoculation of any FeLV-B which may be present in the inoculum prepared by propagating FeLV-A in feline cell cultures. The following observations were made from the in vivo experiments: (i) subgroup conversion from FeLV-A to FeLV-A and FeLV-B, as determined by the interference assay, appeared to occur in plasma between 10 and 16 weeks postinoculation (p.i.); (ii) FeLV-B-like recombinants (rFeLVs), however, could be detected in DNA isolated from buffy coats and bone marrow by PCR as early as 1 to 2 weeks p.i.; (iii) while a mixture of rFeLV species containing various amounts of N-terminal substitution of the endogenous FeLV-derived env sequences were detected at 8 weeks p.i., rFeLV species harboring relatively greater amounts of such substitution appeared to predominate at later infection time points; (iv) the deduced amino acid sequence of rFeLV clones manifested striking similarity to natural FeLV-B isolates, within the mid-SU region of the env sequenced in this work; and (v) four of the five cats, which were kept for determination of tumor incidence, developed thymic lymphosarcomas within 28 to 55 weeks p.i., with all tumor DNAs harboring both FeLV-A and rFeLV proviruses. These results provide direct evidence for how FeLV-B species evolve in vivo from FeLV-A and present a new experimental approach for efficient induction of thymic tumors in cats, which should be useful for the study of retroviral lymphomagenesis in this outbred species.  相似文献   

13.
Toxoplasma gondii and Bartonella spp. are zoonotic pathogens of cats. Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLv) are related to human immunodeficiency virus and human leukemia virus, respectively, and these viruses are immunosuppressive. In the present study, the prevalence of antibodies to T. gondii , Bartonella spp., FIV, as well as FeLv and Dirofilaria immitis antigens was determined in sera from feral cats (Felis catus) from Cairo, Egypt. Using a modified agglutination test, antibodies to T. gondii were found in 172 (95.5%) of the 180 cats with titers of 1∶5 in 9, 1∶10 in 9, 1∶20 in 3, 1∶40 in 5, 1∶80 in 5, 1∶160 in 15, 1∶320 in 22, and 1∶640 or higher in 104. Thus, 57.4% had high T. gondii titers. Antibodies to Bartonella spp. were found in 105 (59.6%) of 178, with titers of 1∶64 in 45, 1∶128 in 39, 1∶256 in 13, 1∶512 in 3, 1∶1,024 in 4, and 1∶2,048 in 1 cat. Antibodies to FIV were detected in 59 (33.9%) of 174 cats. Of 174 cats tested, antigens to FeLv, and D. immitis were detected in 8 (4.6%) and 6 (3.4%) cats, respectively. The results indicate a high prevalence of T. gondii, Bartonella spp., and FIV infections in cats from Cairo, Egypt. This is the first report of Bartonella spp., and D. immitis infection in cats in Egypt.  相似文献   

14.
The presence of feline immunodeficiency virus (FIV) proviral DNA, expression of FIV p26 core protein, and production of tumor necrosis factor alpha (TNF-alpha) were assessed in sequential biopsies of spleen and lymph node sections, of mononuclear cells of the peripheral blood, and of the serum of specific-pathogen-free cats during the acute phase of FIV infection. A temporal relationship between TNF-alpha production and FIV p26 expression was noted. Two months following FIV infection, and preceding the detection of FIV viremia, levels of TNF-alpha in serum increased significantly (P = 0.04), and they remained elevated during FIV viremia in the third month postinfection. Immunoprecipitates representing expression of TNF-alpha and of FIV p26 were localized in common foci of lymph nodes of FIV-infected cats during this period of active viremia. With the advent of anti-FIV antibodies, circulating levels of TNF-alpha and p26 antigen and expression of TNF-alpha and p26 in the lymph nodes decreased during the fifth month postinfection, and p26 production became undetectable. With clearance of viremia, burden of proviral DNA in peripheral blood mononuclear cells became reduced (P = 0.041), with provirus remaining integrated principally within lymph nodes (P = 0.046). During aviremia, p26 expression was undetectable in any tissue but remained inducible in vitro. During acute FIV infection, TNF-alpha production and p26 expression are intimately linked.  相似文献   

15.
The effects of preinfecting cats with a partially attenuated feline immunodeficiency virus (FIV) on subsequent infection with a fully virulent FIV belonging to a different subtype were investigated. Eight specific-pathogen-free cats were preinfected with graded doses of a long-term in vitro-cultured cell-free preparation of FIV Petaluma (FIV-P, subtype A). FIV-P established a low-grade or a silent infection in the inoculated animals. Seven months later, the eight preinfected cats and two uninfected cats were challenged with in vivo-grown FIV-M2 (subtype B) and periodically monitored for immunological and virological status. FIV-P-preinfected cats were not protected from acute infection by FIV-M2, and the sustained replication of this virus was accompanied by a reduction of FIV-P viral loads in the peripheral blood mononuclear cells and plasma. However, from 2 years postchallenge (p.c.) until 3 years p.c., when the experiment was terminated, preinfected cats exhibited reduced total viral burdens, and some also exhibited a diminished decline of circulating CD4+ T lymphocytes relative to control cats infected with FIV-M2 alone. Interestingly, most of the virus detected in challenged cats at late times p.c. was of FIV-P origin, indicating that the preinfecting, attenuated virus had become largely predominant. By the end of follow-up, two challenged cats had no FIV-M2 detectable in the tissues examined. The possible mechanisms underlying the interplay between the two viral populations are discussed.  相似文献   

16.
The role of cellular immunity in the establishment and progression of immunosuppressive lentivirus infection remains equivocal. To develop a model system with which these aspects of the host immune response can be studied experimentally, we examined the response of cats to a hybrid peptide containing predicted T-and B-cell epitopes from the gag and env genes of feline immunodeficiency virus (FIV). Cats were immunized with an unmodified 17-residue peptide incorporating residues 196 to 208 (from gag capsid protein p24) and 395 to 398 (from env glycoprotein gp120) of the FIV Glasgow-8 strain by using Quil A as an adjuvant. Virus-specific lymphocytotoxicity was measured by chromium-51 release assays. The target cells were autologous or allogeneic skin fibroblasts either infected with recombinant FIV gag vaccinia virus or pulsed with FIV peptides. Effector cells were either fresh peripheral blood mononuclear cells or T-cell lines stimulated with FIV peptides in vitro. Cytotoxic effector cells from immunized cats lysed autologous, but not allogeneic, target cells when they were either infected with recombinant FIV gag vaccinia virus or pulsed with synthetic peptides comprising residues 196 to 205 or 200 to 208 plus 395. Depletion of CD8+ T cells, from the effector cell population abrogated the lymphocytotoxicity. Immunized cats developed an antibody response to the 17-residue peptide immunogen and to recombinant p24. However, no antibodies which recognized smaller constituent peptides could be detected. This response correlated with peptide-induced T-cell proliferation in vitro. This study demonstrates that cytotoxic T lymphocytes specific for FIV can be induced following immunization with an unmodified short synthetic peptide and defines a system in which the protective or pathological role of such responses can be examined.  相似文献   

17.
Human immunodeficiency virus (HIV) causes a long, asymptomatic infection characterized by normal to elevated numbers of circulating CD8+ cells and a progressive decline in CD4+ cells. It has been speculated that HIV-specific antiviral activity driven by CD8+ T cells may control viral replication during this period and maintain the clinically asymptomatic stage of disease. The disease induced in cats by feline immunodeficiency virus (FIV) is similar to HIV in that it is characterized by a long asymptomatic stage with a progressive decline in CD4+ cells, culminating in AIDS. In the present study, we demonstrate that FIV is more readily isolated from CD8+ T-cell-depleted peripheral blood mononuclear cells (PBMC) of FIV-infected cats than from unfractionated PBMC cultures. In addition, CD8+ T cells isolated from FIV-positive cats demonstrating anti-FIV activity in PBMC cultures inhibit FIV infection of FCD4E cells in vitro. Anti-FIV activity is not found in FIV- negative cats and is not characteristic of cats acutely infected with FIV but is present in the majority of chronically infected, clinically asymptomatic and symptomatic cats. Decreases in plasma and cell-associated viremia during the acute-stage FIV infection appears to precede the appearance of CD8+ anti-FIV cells in the circulation. In summary, this study demonstrates a population(s) of CD8+ T cells in chronically FIV-infected cats capable of suppressing FIV replication in cultured PBMC. The significance of anti-FIV CD8+ cells in the immunopathogenesis of the infection and disease progression has yet to be determined.  相似文献   

18.
19.
We determined prevalence to feline immunodeficiency virus (FIV) antibodies, feline leukemia virus (FeLV) antigen, and Toxoplasma gondii antibodies in feral cats (Felis catus) on Mauna Kea Hawaii from April 2002 to May 2004. Six of 68 (8.8%) and 11 of 68 (16.2%) cats were antibody positive to FIV and antigen positive for FeLV, respectively; 25 of 67 (37.3%) cats were seropositive to T. gondii. Antibodies to FeLV and T. gondii occurred in all age and sex classes, but FIV occurred only in adult males. Evidence of current or previous infections with two of these infectious agents was detected in eight of 64 cats (12.5%). Despite exposure to these infectious agents, feral cats remain abundant throughout the Hawaiian Islands.  相似文献   

20.
The Japanese isolate (TM1 strain) of feline immunodeficiency virus (FIV) which replicates in a feline CD4 (fCD4)-positive lymphoblastoid cell line (MYA-1 cells) was molecularly cloned from extrachromosomal closed circular DNA. The restriction map of the clone, termed pFTM 191 complete genome (CG), showed a considerable difference from that of the U.S. isolate (Petaluma strain) of FIV. The sequence homology in the long terminal repeat between the TM1 and Petaluma strain was 82%. The pFTM 191 CG was biologically active after transfection into Crandell feline kidney cells which were permissive for replication of FIV Petaluma. However, the progeny virions could not reinfect fCD4-negative Crandell feline kidney cells but could infect fCD4-positive MYA-1 cells. When a specific-pathogen-free cat was inoculated with the virus derived from the pFTM 191 CG, the cat seroconverted within 8 weeks postinoculation and FIV was reisolated at 4, 8, and 20 weeks postinoculation. These results indicate the infectivity of the pFTM 191 CG in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号