首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the peptide polycations salmon protamine (M r = 4332,z = + 21) and poly-l-lysine (M r 100,00,z + 775) on ion channels formed by synthetic alamethicin Alm-F30 (one negative charge), natural Alm-F50 (neutral) and phosphorylated Alm-F50 (two negative charges) reconstituted in planar lipid bilayers have been studied at the single channel level. It was observed that both polycations in micromolar concentrations transiently block ion permeation through the channels formed by each alamethicin analogue, although in case of the neutral Alm-F50 to a significantly lesser extent. Poly-l-lysine showed to be more effective than protamine in blocking these channels. If either polycation is present in the cis-compartment, blockade occurs only at cis positive membrane voltages. At constant polycation concentration, dwell times in the blocked state increase when salt concentration is lowered, and decrease at acidic pH with an apparent pK of 4.8. Mean lifetime of blockade events shortens when membrane voltage is increased, which suggests that both polycations may permeate through the oligomeric alamethicin channels if conductance levels are > 2. We suggest that blockade is caused by electrostatic binding of a single polycation molecule to the C-terminal channel mouth; in case of Alm-F30, Glu18 has to be considered as the putative binding site. Our results provide further evidence for the barrel-stave model and a parallel orientation of dipole monomers in the channel aggregate, the C-termini facing the membrane side with the more positive membrane potential.  相似文献   

2.
Electrophysiology of mammalian Schwann cells   总被引:5,自引:0,他引:5  
Schwann cells are the satellite cell of the peripheral nervous system, and they surround axons and motor nerve terminals. The review summarises evidence for the ion channels expressed by mammalian Schwann cells, their molecular nature and known or speculated functions. In addition, the recent evidence for gap junctions and cytoplasmic diffusion pathways within the myelin and the functional consequences of a lower-resistance myelin sheath are discussed.

The main types of ion channel expressed by Schwann cells are K+ channels, Cl channels, Na+ channels and Ca2+ channels. Each is represented by a variety of sub-types. The molecular and biophysical characteristics of the cation channels expressed by Schwann cells are closely similar or identical to those of channels expressed in peripheral axons and elsewhere. In addition, Schwann cells express P2X ligand-gated ion channels. Possible in vivo roles for each ion channel type are discussed. Ion channel expression in culture could have a special function in driving or controlling cell proliferation and recent evidence indicates that some Ca2+ channel and Kir channel expression in culture is dependent upon the presence of neurones and local electrical activity.  相似文献   


3.
From an antennal cDNA library of Heliothis virescens a clone has been isolated encoding a polypeptide of 678 amino acids. Data base comparisons and primary structure analysis of the deduced protein sequence (HvCNG) indicated significant homology to cyclic nucleotide and voltage-activated ion channels including six putative membrane spanning domains, a putative cyclic nucleotide binding site, a pore region and a voltage-sensor motif. Heterologous expression of the cloned cDNA in Sf9 cells resulted in a polypeptide of the predicted molecular mass. Patch clamp analysis allowed to record the activity of the identified HvCNG channels; they were activated by cAMP but also by hyperpolarization. The channel displayed in potassium solution a conductance of 30 pS; the ion selectivity was calculated as PK/PNa approximately 3. Northern blot analysis revealed that the channel is highly expressed in the antennae; weaker signal were detected in heads and legs. In situ hybridization of tissue sections through the antennae showed a spatial distribution of reactive cells; they are located beneath sensillar hairs. Thus, a novel channel type has been identified which may play an important role in antennal cells.  相似文献   

4.
Ion channels catalyze the permeation of charged molecules across cell membranes and are essential for many vital physiological functions, including nerve and muscle activity. To understand better the mechanisms underlying ion conduction and valence selectivity of narrow ion channels, we have employed free energy techniques to calculate the potential of mean force (PMF) for ion movement through the prototypical gramicidin A channel. Employing modern all-atom molecular dynamics (MD) force fields with umbrella sampling methods that incorporate one hundred 1-2 ns trajectories, we find that it is possible to achieve semi-quantitative agreement with experimental binding and conductance measurements. We also examine the sensitivity of the MD-PMF results to the choice of MD force field and compare PMFs for potassium, calcium and chloride ions to explore the basis for the valence selectivity of this narrow and uncharged ion channel. A large central barrier is observed for both anions and divalent ions, consistent with lack of experimental conductance. Neither anion or divalent cation is seen to be stabilized inside the channel relative to the bulk electrolyte and each leads to large disruptions to the protein and membrane structure when held deep inside the channel. Weak binding of calcium ions outside the channel corresponds to a free energy well that is too shallow to demonstrate channel blocking. Our findings emphasize the success of the MD-PMF approach and the sensitivity of ion energetics to the choice of biomolecular force field.  相似文献   

5.
6.
Cyclic nucleotide-modulated ion channels play crucial roles in signal transduction in eukaryotes. The molecular mechanism by which ligand binding leads to channel opening remains poorly understood, due in part to the lack of a robust method for preparing sufficient amounts of purified, stable protein required for structural and biochemical characterization. To overcome this limitation, we designed a stable, highly expressed chimeric ion channel consisting of the transmembrane domains of the well characterized potassium channel KcsA and the cyclic nucleotide-binding domains of the prokaryotic cyclic nucleotide-modulated channel MloK1. This chimera demonstrates KcsA-like pH-sensitive activity which is modulated by cAMP, reminiscent of the dual modulation in hyperpolarization-activated and cyclic nucleotide-gated channels that display voltage-dependent activity that is also modulated by cAMP. Using this chimeric construct, we were able to measure for the first time the binding thermodynamics of cAMP to an intact cyclic nucleotide-modulated ion channel using isothermal titration calorimetry. The energetics of ligand binding to channels reconstituted in lipid bilayers are substantially different from those observed in detergent micelles, suggesting that the conformation of the chimera''s transmembrane domain is sensitive to its (lipid or lipid-mimetic) environment and that ligand binding induces conformational changes in the transmembrane domain. Nevertheless, because cAMP on its own does not activate these chimeric channels, cAMP binding likely has a smaller energetic contribution to gating than proton binding suggesting that there is only a small difference in cAMP binding energy between the open and closed states of the channel.  相似文献   

7.
《Biophysical journal》2023,122(3):496-505
Cav1.1 is the voltage-gated calcium channel essential for the contraction of skeletal muscles upon membrane potential changes. Structural determination of the Cav1.1 channel opens the avenue toward understanding of the structure-function relationship of voltage-gated calcium channels. Here, we show that there exist two Ca2+-binding sites, termed S1 and S2, within the selectivity filter of Cav1.1 through extensive molecular dynamics simulations on various initial ion arrangement configurations. The formation of both binding sites is associated with the four Glu residues (Glu292/614/1014/1323) that constitute the so-called EEEE locus. At the S1 site near the extracellular side, the Ca2+ ion is coordinated with the negatively charged carboxylic groups of these Glu residues and of the Asp615 residue either in a direct way or via an intermediate water molecule. At the S2 site, Ca2+ binding shows two distinct states: an upper state involving two out of the four Glu residues in the EEEE locus and a lower state involving only one Glu residue. In addition, there exist two recruitment sites for Ca2+ above the entrance of the filter. These findings promote the understanding of mechanism for ion permeation and selectivity in calcium channels.  相似文献   

8.
Understanding of the molecular architecture necessary for selective K(+) permeation through the pore of ion channels is based primarily on analysis of the crystal structure of the bacterial K(+) channel KcsA, and structure:function studies of cloned animal K(+) channels. Little is known about the conduction properties of a large family of plant proteins with structural similarities to cloned animal cyclic nucleotide-gated channels (CNGCs). Animal CNGCs are nonselective cation channels that do not discriminate between Na(+) and K(+) permeation. These channels all have the same triplet of amino acids in the channel pore ion selectivity filter, and this sequence is different from that of the selectivity filter found in K(+)-selective channels. Plant CNGCs have unique pore selectivity filters; unlike those found in any other family of channels. At present, the significance of the unique pore selectivity filters of plant CNGCs, with regard to discrimination between Na(+) and K(+) permeation is unresolved. Here, we present an electrophysiological analysis of several members of this protein family; identifying the first cloned plant channel (AtCNGC1) that conducts Na(+). Another member of this ion channel family (AtCNGC2) is shown to have a selectivity filter that provides a heretofore unknown molecular basis for discrimination between K(+) and Na(+) permeation. Specific amino acids within the AtCNGC2 pore selectivity filter (Asn-416, Asp-417) are demonstrated to facilitate K(+) over Na(+) conductance. The selectivity filter of AtCNGC2 represents an alternative mechanism to the well-known GYG amino acid triplet of K(+) channels that has been identified as the critical basis for K(+) over Na(+) permeation through the pore of ion channels.  相似文献   

9.
Although ion permeation and gating of L-type Ca(2+) channels are generally considered separate processes controlled by distinct components of the channel protein, ion selectivity can vary with the kinetic state. To test this possibility, we studied single-channel currents (cell-attached) of recombinant L-type channels (Ca(V)1.2, beta(2a), and alpha(2)delta) transiently expressed in tsA201 cells in the presence of the channel agonist BayK 8644 which promotes long channel openings (Mode 2 openings). We found that both the brief (Mode 1) and long (Mode 2) mean open times in the presence of Ca(2+) were relatively longer than those with Ba(2+). The unitary slope conductance with Ba(2+) was significantly larger (p<0.05) in Mode 2 openings than for brief Mode 1 openings, whereas the conductance with Ca(2+) did not vary with mode gating. Consequently, the gamma(Ba):gamma(Ca) ratio was greater for Mode 2 than Mode 1 openings. Our findings indicate that both ion permeation and gating kinetics of the L-type channel are differentially modulated by permeable ions. Ca(2+) binding to the L-type channel may stabilize the alteration of channel ion permeability mediated by gating kinetics, and thus, play a role in preventing excessive ion entry when the activation gating of the channel is promoted to the prolonged open state.  相似文献   

10.
TRPM5, a member of the superfamily of transient receptor potential ion channels, is essential for the detection of bitter, sweet, and amino acid tastes. In heterologous cell types it forms a nonselective cation channel that is activated by intracellular Ca(2+). TRPM5 is likely to be part of the taste transduction cascade, and regulators of TRPM5 are likely to affect taste sensation. In this report we show that TRPM5, but not the related channel TRPM4b, is potently blocked by extracellular acidification. External acidification has two effects, a fast reversible block of the current (IC(50) pH = 6.2) and a slower irreversible enhancement of current inactivation. Mutation of a single Glu residue in the S3-S4 linker and a His residue in the pore region each reduced sensitivity of TRPM5 currents to fast acid block (IC(50) pH = 5.8 for both), and the double mutant was nearly insensitive to acidic pH (IC(50) pH = 5.0). Prolonged exposure to acidic pH enhanced inactivation of TRPM5 currents, and mutant channels that were less sensitive to acid block were also less sensitive to acid-enhanced inactivation, suggesting an intimate association between the two processes. These processes are, however, distinct because the pore mutant H896N, which has normal sensitivity to acid block, shows significant recovery from acid-enhanced inactivation. These data show that extracellular acidification acts through specific residues on TRPM5 to block conduction through two distinct but related mechanisms and suggest a possible interaction between extracellular pH and activation and adaptation of bitter, sweet, and amino acid taste transduction.  相似文献   

11.
FCDI (fast Ca2?-dependent inactivation) is a mechanism that limits Ca2? entry through Ca2? channels, including CRAC (Ca2? release-activated Ca2?) channels. This phenomenon occurs when the Ca2? concentration rises beyond a certain level in the vicinity of the intracellular mouth of the channel pore. In CRAC channels, several regions of the pore-forming protein Orai1, and STIM1 (stromal interaction molecule 1), the sarcoplasmic/endoplasmic reticulum Ca2? sensor that communicates the Ca2? load of the intracellular stores to Orai1, have been shown to regulate fast Ca2?-dependent inactivation. Although significant advances in unravelling the mechanisms of CRAC channel gating have occurred, the mechanisms regulating fast Ca2?-dependent inactivation in this channel are not well understood. We have identified that a pore mutation, E106D Orai1, changes the kinetics and voltage dependence of the ICRAC (CRAC current), and the selectivity of the Ca2?-binding site that regulates fast Ca2?-dependent inactivation, whereas the V102I and E190Q mutants when expressed at appropriate ratios with STIM1 have fast Ca2?-dependent inactivation similar to that of WT (wild-type) Orai1. Unexpectedly, the E106D mutation also changes the pH dependence of ICRAC. Unlike WT ICRAC, E106D-mediated current is not inhibited at low pH, but instead the block of Na? permeation through the E106D Orai1 pore by Ca2? is diminished. These results suggest that Glu1?? inside the CRAC channel pore is involved in co-ordinating the Ca2?-binding site that mediates fast Ca2?-dependent inactivation.  相似文献   

12.
K(+) channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K(2P) K(+) channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2) residue near the pore of TASK-2, which occurs with the unusual pK(a) of 8.0. We now corroborate this hypothesis by transplanting the TASK-2 extracellular pH (pH(o)) sensor in the background of a pH(o)-insensitive TASK-3 channel, which leads to the restitution of pH(o)-gating. Using a concatenated channel approach, we also demonstrate that for TASK-2 to open, pH(o) sensors must be neutralized in each of the two subunits forming these dimeric channels with no apparent cross-talk between the sensors. These results are consistent with adaptive biasing force analysis of K(+) permeation using a model selectivity filter in wild-type and mutated channels. The underlying free-energy profiles confirm that either a doubly or a singly charged pH(o) sensor is sufficient to abolish ion flow. Atomic detail of the associated mechanism reveals that, rather than a collapse of the pore, as proposed for other K(2P) channels gated at the selectivity filter, an increased height of the energetic barriers for ion translocation accounts for channel blockade at acid pH(o). Our data, therefore, strongly suggest that a cycle of protonation/deprotonation of pH(o)-sensing arginine 224 side chain gates the TASK-2 channel by electrostatically tuning the conformational stability of its selectivity filter.  相似文献   

13.
Immke DC  McCleskey EW 《Neuron》2003,37(1):75-84
Acid-sensing ion channels (ASICs) open when extracellular pH drops and they are enhanced by lactate, making them specialized for detecting lactic acidosis. Highly expressed on cardiac nociceptors and some other sensory neurons, ASICs may help trigger pain caused by tissue ischemia. We report that H(+) opens ASIC3 by speeding release of Ca(2+) from a high-affinity binding site (K(Ca) = 150 nM) on the extracellular side of the pore. The bound Ca(2+) blocks permeation and the channel conducts when multiple H(+) ions relieve this block. Activation through Ca(2+) explains sensitivity to lactate, which decreases extracellular [Ca(2+)], and it may prove relevant in CNS pathologies (stroke, seizure) that simultaneously drop pH and Ca(2+).  相似文献   

14.
Five basic tastes (bitter, sweet, umami, salty, and sour) are detected in the four taste areas where taste buds reside. Although molecular mechanisms for detecting bitter, sweet, and umami have been well clarified, those for sour and salty remain poorly understood. Several channels including acid-sensing ion channels have been proposed as candidate sour receptors, but they do not encompass all sour-sensing abilities in vivo. We recently reported a novel candidate for sour sensing, the polycystic kidney disease-2-like 1 (PKD2L1)-PKD1L3 channel complex. This channel is not a traditional ligand-gated channel and is gated open only after removal of an acid stimulus, called an off response. Here we show that off responses upon acid stimulus are clearly observed in native taste cells from circumvallate, but not fungiform papillae, of glutamate decarboxylase 67-green fluorescent protein (GAD67-GFP) knock-in mice, from which Type III taste cells can be visualized, using Ca2+ imaging and patch clamp methods. Off responses were detected in most cells where PKD2L1 immunoreactivity was observed. Interestingly, the pH threshold for acid-evoked intracellular Ca2+ increase was around 5.0, a value much higher than that observed in HEK293 cells expressing the PKD2L1-PKD1L3 complex. Thus, PKD2L1-PKD1L3-mediated acid-evoked off responses occurred both in HEK293 cells and in native taste cells, suggesting the involvement of the PKD2L1-PKD1L3 complex in acid sensing in vivo.  相似文献   

15.
Anomalous mole-fraction effects (AMFE) were studied, using the inside-out configuration of the patchclamp technique, in both recombinant wild-type alpha-homomeric rat olfactory adenosine 3',5'-cyclic monophosphate (cAMP)-gated channels (rOCNC1) expressed in human embryonic kidney cells (HEK 293) and native cyclic nucleotide-gated (CNG) channels in acutely isolated rat olfactory receptor neurons. Single-channel and macroscopic currents were activated by 200 microM and 500 microM cAMP, respectively. Macroscopic currents, measured with mixtures of Na(+)-NH(4)(+) or Cs(+)-Li(+) in the cytoplasmic bathing solution, displayed AMFE in the rOCNC1 channels at both positive and negative membrane potentials. The rOCNC1 single-channel conductance showed a distinct minimum (or maximum) in an 80% Na(+)-20% NH(4)(+) mixture (or a 60% Cs(+)-40% Li(+) mixture), but only at positive membrane potentials. Macroscopic measurements in native olfactory CNG channels with mixtures of Na(+)-NH(4)(+) indicated similar AMFE. These results suggest that both native CNG channels and recombinant alpha-homomeric channels allow several ions to be present simultaneously within the channel pore. They also further validate the dominant role of the alpha-subunit in permeation through these channels, provide the first evidence to suggest that rOCNC1 channels have multi-ion properties and further justify the use of the rOCNC1 channel as an effective model for structure-function studies of ion permeation and selectivity in olfactory CNG channels.  相似文献   

16.
Taste reception is fundamental for proper selection of food and beverages. Chemicals detected as taste stimuli by vertebrates include a large variety of substances, ranging from inorganic ions (e.g., Na+, H+) to more complex molecules (e.g., sucrose, amino acids, alkaloids). Specialized epithelial cells, called taste receptor cells (TRCs), express specific membrane proteins that function as receptors for taste stimuli. Classical view of the early events in chemical detection was based on the assumption that taste substances bind to membrane receptors in TRCs without permeating the tissue. Although this model is still valid for some chemicals, such as sucrose, it does not hold for small ions, such as Na+, that actually diffuse inside the taste tissue through ion channels. Electrophysiological, pharmacological, biochemical, and molecular biological studies have provided evidence that indeed TRCs use ion channels to reveal the presence of certain substances in foodstuff. In this review, we focus on the functional and molecular properties of ion channels that serve as receptors in taste transduction.  相似文献   

17.
The fundamental properties of ion channels assure their selectivity for a particular ion, its rapid permeation through a central pore and that such electrical activity is modulated by factors that control the opening and closing (gating) of the channel. All cell types possess ion channels and their regulated flux of ions across the membrane play critical roles in all steps of life. An ion channel does not act alone to control cell excitability but rather forms part of larger protein complexes. The identification of protein interaction partners of ion channels and their influence on both the fundamental biophysical properties of the channel and its expression in the membrane are revealing the many ways in which electrical activity may be regulated. Highlighted here is the novel use of the patch clamp method to dissect out the influence of protein interactions on the activity of individual GABA(A) receptors. The studies demonstrate that ion conduction is a dynamic property of a channel and that protein interactions in a cytoplasmic domain underlie the channel's ability to alter ion permeation. A structural model describing a reorganisation of the conserved cytoplasmic gondola domain and the influence of drugs on this process are presented.  相似文献   

18.
Rho S  Lee HM  Lee K  Park C 《FEBS letters》2000,478(3):246-252
Bovine retinal cyclic nucleotide-gated (CNG) ion channel contains an evolutionary conserved N-glycosylation site in the external loop between the fifth transmembrane segment and the pore-forming region. The effect of tunicamycin treatment and the site-specific mutation suggested that the channel is glycosylated when expressed in Xenopus oocytes. To test the role of glycosylation in this channel, N-glycosylation was abolished by mutation, and the detailed permeation and the gating characteristics of the mutant channel were investigated. The charge contribution turned out to be detectable, although the mutation of the N-glycosylation site did not affect expression and functionality of the CNG channel in oocytes.  相似文献   

19.
Peralta EG 《Life sciences》1995,56(11-12):957-964
Neurotransmitter receptors alter membrane excitability and synaptic efficacy by generating intracellular signals that ultimately change the properties of ion channels. Given their critical role in controlling cell membrane potential, potassium channels are frequently the targets of modulatory signals from many different G protein-coupled receptors. However, due to the heterogeneity of potassium channel expression in vivo, it has been difficult to determine the molecular mechanisms governing the regulation of molecularly defined potassium channels. Through expression studies in Xenopus oocytes and mammalian cells, we found that the m1 muscarinic acetylcholine receptor (mAChR) potently suppresses a cloned delayed rectifier potassium channel, termed RAK, through a pathway involving phospholipase C activation and direct tyrosine phosphorylation of the RAK protein. In contrast, we found that RAK channel activity is strongly enhanced following agonist activation of beta2-adrenergic receptors; this effect requires a single PKA consensus phosphorylation site located near the amino terminus of the channel protein. These results demonstrate that a specific type of potassium channel that is widely expressed in the mammalian brain and heart is subject to both positive and negative regulation by G protein-dependent pathways.  相似文献   

20.
Single channel and whole cell recordings were used to study ion permeation through Ca channels in isolated ventricular heart cells of guinea pigs. We evaluated the permeability to various divalent and monovalent cations in two ways, by measuring either unitary current amplitude or reversal potential (Erev). According to whole cell measurements of Erev, the relative permeability sequence is Ca2+ greater than Sr2+ greater than Ba2+ for divalent ions; Mg2+ is not measurably permeant. Monovalent ions follow the sequence Li+ greater than Na+ greater than K+ greater than Cs+, and are much less permeant than the divalents. These whole cell measurements were supported by single channel recordings, which showed clear outward currents through single Ca channels at strong depolarizations, similar values of Erev, and similar inflections in the current-voltage relation near Erev. Information from Erev measurements stands in contrast to estimates of open channel flux or single channel conductance, which give the sequence Na+ (85 pS) greater than Li+ (45 pS) greater than Ba2+ (20 pS) greater than Ca2+ (9 pS) near 0 mV with 110-150 mM charge carrier. Thus, ions with a higher permeability, judged by Erev, have lower ion transfer rates. In another comparison, whole cell Na currents through Ca channels are halved by less than 2 microM [Ca]o, but greater than 10 mM [Ca]o is required to produce half-maximal unitary Ca current. All of these observations seem consistent with a recent hypothesis for the mechanism of Ca channel permeation, which proposes that: ions pass through the pore in single file, interacting with multiple binding sites along the way; selectivity is largely determined by ion affinity to the binding sites rather than by exclusion by a selectivity filter; occupancy by only one Ca ion is sufficient to block the pore's high conductance for monovalent ions like Na+; rapid permeation by Ca ions depends upon double occupancy, which only becomes significant at millimolar [Ca]o, because of electrostatic repulsion or some other interaction between ions; and once double occupancy occurs, the ion-ion interaction helps promote a quick exit of Ca ions from the pore into the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号