首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chronic inflammation is associated with inducible nitric oxide synthase expression in infiltrating and resident cells (epithelia, neurons) and an exaggerated release of nitric oxide. NO can induce apoptosis in macrophages and tumour cell lines. We investigated whether NO induced cell death in an epithelial (T84) cell fine via apoptosis. Culture T84 cells were exposed to a bolus of NO (40 or 80 muM) dissolved in Hank's balanced salt solution (HBSS) supplemented with 10% fetal calf serum (FCS). After incubation for 4 h at 37( degrees )C in 5% CO(2), cells were either stained for DNA fragmentation with the TdT-mediated dUTP-biotin nick end labelling (TUNEL) method, or cytosolic DNA fragments quantified by a cell death detection ELISA assay. Nitric oxide induced apoptosis in a dose-dependent manner which preceded frank cell death (failure to exclude Trypan blue). These data suggest that epithelial cell death may be NO dependent and via apoptosis, in states of gut inflammation.  相似文献   

2.
Nitric oxide induces oxidative stress and apoptosis in neuronal cells   总被引:9,自引:0,他引:9  
Within the central nervous system and under normal conditions, nitric oxide (NO) is an important physiological signaling molecule. When produced in large excess, NO also displays neurotoxicity. In our previous report, we have demonstrated that the exposure of neuronal cells to NO donors induced apoptotic cell death, while pretreatment with free radical scavengers L-ascorbic acid 2-[3, 4-dihydro-2,5,7,8-tetramethyl-2-(4,8, 12-trimethyltridecyl)-2H-1-benzopyran-6-yl-hydrogen phosphate] potassium salt (EPC-K1) or superoxide dismutase attenuated apoptosis effectively, suggesting that reactive oxygen species (ROS) may be involved in the cascade of events leading to apoptosis. In the present investigation, we directly studied the kinetic generation of ROS in NO-treated neuronal cells by flow cytometry using 2', 7'-dichloro-fluorescein diacetate and dihydrorhodamine 123 as redox-sensitive fluorescence probes. The results indicated that exposure of cerebellar granule cells to the NO donor S-nitroso-N-acetylpenicillamine (SNAP) induced oxidative stress, which was characterized by the accumulation of cytosolic and mitochondrial ROS, the increase in the extracellular hydrogen peroxide level, and the formation of lipid peroxidation products. SNAP treatment also induced apoptotic cell death as confirmed by the formation of cytosolic mono- and oligonucleosomes. Pretreating cells with the novel antioxidant EPC-K1 effectively prevented oxidative stress induced by SNAP, and attenuated cells from apoptosis.  相似文献   

3.
Glibenclamide as a second-generation compound of sulfonylurea has widely been used in the treatment of type 2 diabetes patients. It has been shown that it induces apoptosis in beta cells, which is partially mediated by Ca(2+) influx. Here, we investigated the role of nitric oxide (NO) and nitric oxide synthase (NOS) isoforms on glibenclamide-induced apoptosis in rat insulinoma cells. Our results showed that glibenclamide induces NO generation (measured as nitrite) that is accompanied with decrease of cell viability in a defined concentration of glibenclamide. The effects of glibenclamide on cell viability were partially inhibited after treatment with N(G)-nitro-L-arginine methyl ester (L-NAME), inhibitor more selective for constitutive nitric oxide synthase, and in the presence of D600--a blocker of voltage-gated L-type Ca(2+) channels inhibited Ca(2+) influx into beta cells, whereas aminoguanidine (AG), a preferential inhibitor of inducible NOS, was significantly less effective. Analysis of DNA fragmentation by electrophoresis and staining with Hoechest 33342 and propidium iodide showed that L-NAME, but not AG, prevented DNA fragmentation and decreased the number of cells with condensed and fragmented nuclei. It revealed that the effects of glibenclamide on apoptosis were partially inhibited by treatment with L-NAME. In conclusion, we have shown that NO production in glibenclamide treated cells may be involved in the induction of apoptotic cell death in pure beta cell line and it may be due to Ca(2+) dependent activation of constitutive NOS isoforms.  相似文献   

4.
The human Burkitt lymphoma Daudi cell line expresses constitutively active nuclear factor kappaB (NF-kappaB) in the nucleus in spite of high levels of inhibitor kappaB-alpha (IkappaB-alpha) in the cytoplasm. The antiproliferative response of these cells to interferon-alpha (IFN-alpha) correlated with the inhibition of the constitutive NF-kappaB activity by the cytokine. The present study shows that IFN-alpha caused an increase in p53 level, inhibited cell proliferation by [(3)H]thymidine incorporation, and stimulated cytotoxicity and apoptosis by PARP-cleavage in the Daudi cells. In order to study the relationship between the constitutively active NF-kappaB and IkappaB-alpha, a dominant negative mutant IkappaB-alpha (IkappaB-alphaDN), lacking the N-terminal 36 amino acids required for the activation of NF-kappaB by tumor necrosis factor-alpha (TNF-alpha), was expressed in the Daudi cells. The expression of IkappaB-alphaDN protein did not inhibit the constitutive NF-kappaB activity, but it inhibited cell proliferation, antiproliferative response to IFN-alpha, and phosphorylated mitogen activated protein kinase (p-MAPK) level. Thus, our results suggest that constitutive NF-kappaB activity in the human Burkitt lymphoma Daudi cells is maintained by a mechanism independent of IkappaB-alpha degradation, and that the IkappaB-alpha is involved in the proliferation of these cells, possibly through the MAP kinase pathway. Therefore, in addition to IFN-alpha treatment, both NF-kappaB and IkappaB-alpha may be used as drug targets for inhibiting cell proliferation in the lymphomas.  相似文献   

5.
The presence of immunoreactive inducible nitric oxide synthase molecules (ir-iNOS) is demonstrated in the Lymantria dispar IPLB-LdFB cell line. The maximum ir-iNOS inducibility is observed 18 h after incubation with sodium nitroprusside (SNP). The increase in NO provoked by SNP in turn induces apoptosis. However, this phenomenon is observed only after 48 h. The NOS-inhibitors N(omega)-nitro-L-arginine methyl ester (L-NAME) and N-[3-(aminomethyl)-benzyl]acetamide (1400W) were both unable to block the SNP-induced apoptosis at all the concentrations used. Incubation with SNP plus N-acetyl-L-cysteine (NAC) further augmented the percentage of cell death with respect to SNP used alone, and this process is seen earlier, i.e. after 24 h. Moreover, the induction of apoptosis in the presence of NAC is time- and concentration-dependent. The high percentage of cell death with SNP+NAC suggests that NAC forms S-nitrosothiols with NO, resulting in an increase in the bioavailability of NO. In conclusion, these findings show the existence of a close relationship between mammalian and invertebrate cells with regards to SNP and NAC induction and the related NO response.  相似文献   

6.
Boyd CS  Cadenas E 《Biological chemistry》2002,383(3-4):411-423
Nitric oxide, generated by endogenous nitric oxide synthases or nitric oxide donors, can promote or prevent apoptosis induced by diverse pro-apoptotic stimuli in cell culture models. Both mitochondrial-dependent and -independent apoptotic signaling pathways mediate this dichotomous cellular response to nitric oxide. The molecular mechanisms behind these effects are complex and involve a number of nitrogen oxide-related species that are more reactive than nitric oxide itself. The local cellular environment plays a dynamic role in determining the nature and concentration of these species. Important components of the microenvironment include: the cellular redox state, glutathione, transition metals and the presence of other oxygen- and nitrogen-centered radicals. In particular, redox-sensitive nitrosating species are favorably generated under physiological conditions and capable of modifying multiple cell signaling pathways through reversible S-nitrosation reactions. Cytochrome c release from mitochondria is an important mechanism for the activation of caspase-3 and the initiation of cell death in response to 'intrinsic' pro-apoptotic stimuli, including oxidative and nitrosative stress. In turn, caspases and mitogen associated protein kinases may modulate cytochrome c release through their effects on the Bcl-2 family of proteins. This review will focus on (i) the importance of the cellular environment in determining the fate of nitric oxide and (ii) the ability of S-nitrosation to regulate mitochondrial-dependent apoptosis at the level of mitochondrial bioenergetics, cytochrome c release, caspases, mitogen associated protein kinases, and the Bcl-2 family of proteins.  相似文献   

7.
Nitric oxide (NO): an effector of apoptosis   总被引:8,自引:0,他引:8  
  相似文献   

8.

Background

We have recently shown that deregulation PI3-kinase/AKT survival pathway plays an important role in pathogenesis of diffuse large B cell lymphoma (DLBCL). In an attempt to identify newer therapeutic agents, we investigated the role of Resveratrol (trans-3,4′, 5-trihydroxystilbene), a naturally occurring polyphenolic compound on a panel of diffuse large B-cell lymphoma (DLBCL) cells in causing inhibition of cell viability and inducing apoptosis.

Methodology/Principal Findings

We investigated the action of Resveratrol on DLBCL cells and found that Resveratrol inhibited cell viability and induced apoptosis by inhibition of constitutively activated AKT and its downstream targets via generation of reactive oxygen species (ROS). Simultaneously, Resveratrol treatment of DLBCL cell lines also caused ROS dependent upregulation of DR5; and interestingly, co-treatment of DLBCL with sub-toxic doses of TRAIL and Resveratrol synergistically induced apoptosis via utilizing DR5, on the other hand, gene silencing of DR5 abolished this effect.

Conclusion/Significance

Altogether, these data suggest that Resveratrol acts as a suppressor of AKT/PKB pathway leading to apoptosis via generation of ROS and at the same time primes DLBCL cells via up-regulation of DR5 to TRAIL-mediated apoptosis. These data raise the possibility that Resveratrol may have a future therapeutic role in DLBCL and possibly other malignancies with constitutive activation of the AKT/PKB pathway.  相似文献   

9.
10.
11.
Marzec M  Liu X  Wysocka M  Rook AH  Odum N  Wasik MA 《PloS one》2011,6(9):e24849

Background

mTOR kinase forms the mTORC1 complex by associating with raptor and other proteins and affects a number of key cell functions. mTORC1 activates p70S6kinase 1 (p70S6K1) and inhibits 4E-binding protein 1 (4E-BP1). In turn, p70S6K1 phosphorylates a S6 protein of the 40S ribosomal subunit (S6rp) and 4E-BP1, with the latter negatively regulating eukaryotic initiation factor 4E (eIF-4E). MNK1 and MNK2 kinases phosphorylate and augment activity of eIF4E. Rapamycin and its analogs are highly specific, potent, and relatively non-toxic inhibitors of mTORC1. Although mTORC1 activation is present in many types of malignancies, rapamycin-type inhibitors shows relatively limited clinical efficacy as single agents. Initially usually indolent, CTCL displays a tendency to progress to the aggressive forms with limited response to therapy and poor prognosis. Our previous study (M. Marzec et al. 2008) has demonstrated that CTCL cells display mTORC1 activation and short-term treatment of CTCL-derived cells with rapamycin suppressed their proliferation and had little effect on the cell survival.

Methods

Cells derived from CTCL were treated with mTORC1 inhibitor rapamycin and MNK inhibitor and evaluated for inhibition of the mTORC1 signaling pathway and cell growth and survival.

Results

Whereas the treatment with rapamycin persistently inhibited mTORC1 signaling, it suppressed only partially the cell growth. MNK kinase mediated the eIF4E phosphorylation and inhibition or depletion of MNK markedly suppressed proliferation of the CTCL cells when combined with the rapamycin-mediated inhibition of mTORC1. While MNK inhibition alone mildly suppressed the CTCL cell growth, the combined MNK and mTORC1 inhibition totally abrogated the growth. Similarly, MNK inhibitor alone displayed a minimal pro-apoptotic effect; in combination with rapamycin it triggered profound cell apoptosis.

Conclusions

These findings indicate that the combined inhibition of mTORC1 and MNK may prove beneficial in the treatment of CTCL and other malignancies.  相似文献   

12.
13.
Heart disease causing cardiac cell death due to ischemia–reperfusion injury is a major cause of morbidity and mortality in the United States. Coronary heart disease and cardiomyopathies are the major cause for congestive heart failure, and thrombosis of the coronary arteries is the most common cause of myocardial infarction. Cardiac injury is followed by post-injury cardiac remodeling or fibrosis. Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac interstitium and results in both systolic and diastolic dysfunctions. It has been suggested by both experimental and clinical evidence that fibrotic changes in the heart are reversible. Hence, it is vital to understand the mechanism involved in the initiation, progression, and resolution of cardiac fibrosis to design anti-fibrotic treatment modalities. Animal models are of great importance for cardiovascular research studies. With the developing research field, the choice of selecting an animal model for the proposed research study is crucial for its outcome and translational purpose. Compared to large animal models for cardiac research, the mouse model is preferred by many investigators because of genetic manipulations and easier handling. This critical review is focused to provide insight to young researchers about the various mouse models, advantages and disadvantages, and their use in research pertaining to cardiac fibrosis and hypertrophy.  相似文献   

14.
The 78-kDa glucose-regulated protein (GRP78) is an important molecular chaperone in the endoplasmic reticulum (ER) induced by various stresses. This study showed that stimulation with anti-CD3 mAb, PMA plus ionomycin, or an antigen increased the levels of GRP78 mRNA in primary T cells, which was inhibited by Ca2+ chelators EGTA and BAPTA-AM and by an inhibitor of calcineurin FK506. In addition, the specific knockdown of GRP78 protein expression induced apoptosis in mouse EL-4 T cell line associated with CHOP induction and caspase-3 activation. Furthermore, overexpression of GRP78 inhibited PMA/ionomycin-induced cell death in EL-4 cells. Collectively, GRP78 expression is induced by TCR activation via a Ca2+-dependent pathway and may play a critical role in maintaining T cell viability in the steady and TCR-activated states. These results suggest a novel regulatory mechanism and an essential function of GRP78 in T cells.  相似文献   

15.
Nitric oxide induces BNIP3 expression that causes cell death in macrophages   总被引:4,自引:0,他引:4  
Nitric oxide (NO) is involved in many physiological processes and also causes pathological effects by inducing apoptosis. It can enhance or suppress apoptosis depending on its concentration and the cell type involved. In this report, we used cDNA microarray analysis to show that SNAP, an NO donor, strongly induces Bcl-2/adenovirus E1B 19kDa-interacting protein 3 (BNIP3) in macrophages. BNIP3 is a mitochondrial pro-apoptotic protein that contains a Bcl-2 homology 3 domain and a COOH-terminal transmembrane (TM) domain. Macrophages activated by LPS/IFN-gamma produce nitric oxide synthase 2 (NOS2) and release endogenous NO. Expression of BNIP3 was also induced in macrophages by LPS/IFN-gamma, and the induction was blocked by a NOS2 inhibitor, S-methyl-isothiourea. Peritoneal macrophages from NOS2-null mice failed to produce BNIP3 in response to LPS/IFN-gamma. We conclude that BNIP3 expression in macrophages is controlled by the intracellular level of nitric oxide. Overexpression of BNIP3 but not of BNIP3 deltaTM, a BNIP3 mutant without the TM domain and C-terminal tail, led to apoptosis of the cells. Promoter analysis showed that the region between -281 and -1 of the 5'-upstream enhancer region of murine BNIP3 was sufficient for NO-dependent expression of BNIP3.  相似文献   

16.
Sterile α motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase (dNTPase) that regulates intracellular dNTP balance. We have previously reported that SAMHD1 mRNA and protein levels are significantly downregulated in CD4+ T-cells of patients with cutaneous T-cell lymphoma (CTCL), a disease characterized by infiltration of neoplastic CD4+ T-lymphocytes into the skin. However, functional significance of SAMHD1 in CTCL development and progression remains unknown. Here we investigate the mechanism by which SAMHD1 induces apoptosis in CTCL-derived CD4+ T-cells. We stably expressed exogenous SAMHD1 in the CTCL-derived HuT78 T-cell line containing a very low level of endogenous SAMHD1 protein. We found that low-level exogenous expression of SAMHD1 led to a significant reduction in HuT78 cell growth, proliferation, and colony formation. Exogenous SAMHD1 expression in HuT78 cells also resulted in increased spontaneous and Fas ligand (Fas-L)-induced apoptosis levels via activation of the extrinsic pathway, including caspase-8, ?3 and ?7. Additionally, increased SAMHD1 significantly reduced the protein and mRNA expression of the short isoform of cFLIP (cFLIPS), an important negative regulator of Fas-L-mediated apoptotic signaling. Our results indicate that exogenous SAMHD1 expression inhibits HuT78 cell growth and proliferation in part by increasing apoptosis. These findings implicate that SAMHD1 acts as an inhibitor in CTCL cell growth, suggesting that downregulation of SAMHD1 expression in neoplastic T-cells can facilitate uncontrolled cell proliferation.  相似文献   

17.
18.
Suria H  Chau LA  Negrou E  Kelvin DJ  Madrenas J 《Life sciences》1999,65(25):2697-2707
T cell apoptosis can be triggered by different mechanisms that lead to distinctive features such as cell shrinkage, membrane blebbing, phosphatidylserine externalization, and internucleosomal DNA fragmentation. Prevailing models for the induction of apoptosis place the cytoskeleton as a distal target of the death effector molecules ('executioners'). However, the cytoskeleton can also play a role in the induction of apoptosis as suggested by the finding that cytoskeletal disruption can induce apoptosis. The mechanism by which this occurs is unknown. Here, we report that T cell apoptosis by cytoskeletal disruption involves a protein synthesis-independent mechanism leading to up-regulation of caspase-3 protease activity and increased accessibility of active caspase-3 to its substrate. Thus, cytoskeleton integrity may regulate the subcellular compartmentalization of death effector molecules.  相似文献   

19.
Nitric oxide (NO) has been identified as a fundamental molecule that interplays with reactive oxygen species (ROS) in determining cell fate. As a previous study indicated that ROS was stimulated in evodiamine-induced human melanoma A375-S2 cell apoptosis, the goal of this study was to investigate the role of NO in the cells. In this study, it was found that evodiamine has a strong inductive effect on NO production synthesized by inducible NOS (iNOS) enzyme in a positive-feedback manner. The generated NO was further showed to induce apoptosis and cell cycle arrest and linked to the activation of p53 and p21. After interruption of p38 and nuclear factor-κB (NF-κB) by pre-treatment with SB203580 and PDTC, iNOS expression, NO synthesis and cell damage were all significantly blocked. It was concluded that p38 and NF-κB were critical to the NO producing system, which contributed greatly to the apoptosis and cell cycle arrest in evodiamine-incubated cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号