首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
The phytochromes are the best studied plant photoreceptors, controlling a wide variety of responses at both whole plant and single cell levels. Three signal transduction pathways, dependent on cGMP and/or calcium, have been found to be utilized by phytochrome to control the expression of genes required for chloroplast development (e.g., CAB and FNR) and anthocyanin biosynthesis (e.g., CHS). In particular, cGMP is a second messenger positively regulating CHS gene expression whilst calcium and calmodulin act as negative regulators. In addition to phytochrome regulation of CHS we have begun to examine the signal transduction pathways utilized by UV photoreceptors. In contrast to phytochrome-mediated responses, results indicate a role for calcium and calmodulin as positive regulators of CHS gene expression in UV light.  相似文献   

5.
Paths through the phytochrome network   总被引:3,自引:0,他引:3  
  相似文献   

6.
Germination of Arabidopsis seeds is light dependent and under phytochrome control. Previously, phytochromes A and B and at least one additional, unspecified phytochrome were shown to be involved in this process. Here, we used a set of photoreceptor mutants to test whether phytochrome D and/or phytochrome E can control germination of Arabidopsis. The results show that only phytochromes B and E, but not phytochrome D, participate directly in red/far-red light (FR)-reversible germination. Unlike phytochromes B and D, phytochrome E did not inhibit phytochrome A-mediated germination. Surprisingly, phytochrome E was required for germination of Arabidopsis seeds in continuous FR. However, inhibition of hypocotyl elongation by FR, induction of cotyledon unfolding, and induction of agravitropic growth were not affected by loss of phytochrome E. Therefore, phytochrome E is not required per se for phytochrome A-mediated very low fluence responses and the high irradiance response. Immunoblotting revealed that the need of phytochrome E for germination in FR was not caused by altered phytochrome A levels. These results uncover a novel role of phytochrome E in plant development and demonstrate the considerable functional diversification of the closely related phytochromes B, D, and E.  相似文献   

7.
Phototropins and phytochromes are the major photosensory receptors in plants and they regulate distinct photomorphogenic responses. The molecular mechanisms underlying functional interactions of phototropins and phytochromes remain largely unclear. We show that the tomato (Lycopersicon esculentum) phytochrome A deficient mutant fri lacks phototropic curvature to low fluence blue light, indicating requirement for phytochrome A for expression of phototropic response. The hp1 mutant that exhibits hypersensitive responses to blue light and red light reverses the impairment of second-positive phototropic response in tomato in phytochrome A-deficient background. Physiological analyses indicate that HP1 functions as a negative regulator of phototropic signal transduction pathway, which is removed via action of phytochrome A. The loss of HP1 gene product in frihp1 double mutant allows the unhindered operation of phototropic signal transduction chain, obviating the need for the phytochrome action. Our results also indicate that the role of phytochrome in regulating phototropism is restricted to low fluence blue light only, and at high fluence blue light, the phytochrome A-deficient fri mutant shows the normal phototropic response.  相似文献   

8.
For optimal survival, various environmental and endogenous factors should be monitored to determine the appropriate timing for seed germination. Light is a major environmental factor affecting seed germination, which is perceived by phytochromes. The light-dependent activation of phytochrome B (PHYB) modulates abscisic acid and gibberellic acid signaling and metabolism. Thus far, several negative regulators of seed germination that act when PHYB is inactive have been reported. However, neither positive regulators of seed germination downstream of PHYB nor a direct mechanism for regulation of the hormone levels has been elucidated. Here, we show that the histone arginine demethylases, JMJ20 and JMJ22, act redundantly as positive regulators of seed germination. When PHYB is inactive, JMJ20/JMJ22 are directly repressed by the zinc-finger protein SOMNUS. However, upon PHYB activation, JMJ20/JMJ22 are derepressed, resulting in increased gibberellic acid levels through the removal of repressive histone arginine methylations at GA3ox1/GA3ox2, which in turn promotes seed germination.  相似文献   

9.
Phytochrome controlled signalling cascades in higher plants   总被引:7,自引:0,他引:7  
  相似文献   

10.
11.
Phytochrome evolution: Phytochrome genes in ferns and mosses   总被引:2,自引:0,他引:2  
We have isolated phytochrome genes from the moss Physcomitrella , the fern Psilotum and PCR-generated phytochrome sequences from a few other ferns. The phytochrome gene of the moss Physcomitrella turned out not to contain the aberrant C-terminal third of the phytochrome from the moss Ceratodon , but the transmitter module-like sequences found in other phytochromes. A series of different phytochrome genes was detected in Psilotum . Differences between the amino acid sequences derived from them ranged from about 5 to more than 22%. Some of these genes are likely pseudogenes. Analysis by phylogenetic tree constructions revealed that higher and lower plant phytochromes evolved with different velocities. Lower plant phytochromes form a separate family characterized by a high degree of similarity. The amino acid differences between phytochrome types detected in a single species of higher plants are about two-fold higher than the differences between phytochromes of species of lower plants belonging to different divisions ( Physcomitrella and Selaginella ). Future studies on phytochrome sequences may eventually also throw light on the significance of Psilotum in the evolution of vascular plants.  相似文献   

12.
Cryptogam phytochromes   总被引:3,自引:0,他引:3  
Phytochrome responses in cryptogams are well characterized. However, the properties of cryptogam phytochromes are not well understood, because of the difficulty in obtaining suitable material. Recent advances in molecular biology offer the possibility of studying cryptogam phytochromes at the molecular level. The functional domains in cryptogam phytochromes have been predicted from the homology of the deduced amino acid sequences to known sequences of different functional proteins. Cryptogam phytochrome gene families are highly variable in size and composition. The most structurally unusual cryptogam phytochrome, found in the moss Ceratodon and the fern Adiantum, has a protein kinase catalytic domain in the C-terminal half, although the N-terminal half is homologous to conventional phytochromes. In conventional phytochrome, modules homologous to the bacterial two-component (transmitter) protein kinase have also been found in the C-terminal ends. While phytochromes lack membrane-spanning sequences, some types may have microtubule attachment sequences. The relationship of these to dichroic phytochrome is discussed. Phytochrome mRNA and proteins are also discussed, as well as the use of mutants in elucidating signal transduction pathways.  相似文献   

13.
The red/far-red light absorbing phytochromes play a major role as sensor proteins in photomorphogenesis of plants. In Arabidopsis the phytochromes belong to a small gene family of five members, phytochrome A (phyA) to E (phyE). Knowledge of the dynamic properties of the phytochrome molecules is the basis of phytochrome signal transduction research. Beside photoconversion and destruction, dark reversion is a molecular property of some phytochromes. A possible role of dark reversion is the termination of signal transduction. Since Arabidopsis is a model plant for biological and genetic research, we focussed on spectroscopic characterization of Arabidopsis phytochromes, expressed in yeast. For the first time, we were able to determine the relative absorption maxima and minima for a phytochrome C (phyC) as 661/725 nm and for a phyE as 670/724 nm. The spectral characteristics of phyC and E are strictly different from those of phyA and B. Furthermore, we show that both phyC and phyE apoprotein chromophore adducts undergo a strong dark reversion. Difference spectra, monitored with phycocyanobilin and phytochromobilin as the apoprotein's chromophore, and in vivo dark reversion of the Arabidopsis phytochrome apoprotein phycocyanobilin adducts are discussed with respect to their physiological function.  相似文献   

14.
Phytochrome photoconversion   总被引:1,自引:1,他引:0  
The spectral properties of native and modified phytochromes and the molecular events during phytochrome photoconversion, , are reviewed. Steady-state and time-resolved absorption spectra of native phytochrome A, as well as recombinant phytochromes (oat and potato phytochrome A and potato phytochrome B) reconstituted with phycocyanobilin and phytochromobilin as chromophores, are analysed. The vinyl double bond, present at position 18 in phytochromobilin and substituted by an ethyl group in phycocyanobilin, has a considerable influence on the photo-transformation kinetics of phytochromes A and B, evidently due to a strong interaction of this region of the chromophore with the protein surrounding. The kinetics of the phototransformation of potato phytochrome B differs from that of oat phytochrome A (wild-type and recombinant), indicating that the chromophore-protein interaction in phytochrome B is different from that in phytochrome A. It remains to be seen whether this difference is due to the di- versus monocotyledon origin of the phytochromes. Optoacoustic spectroscopy, applied to native oat phytochrome A, afforded thermo-dynamic, structural and kinetic parameters of the Pr→I700 and the I700→Pr phototransformations. Raman and infrared spectroscopic data for wild-type phytochrome A suggest that the protonated chromophore in Pr undergoes torsions around two single bonds in addition to the Z→E isomerization of the 15 ,16 double bond, and that all transients, possibly with the exception of IbI, are protonated at the central pyrrole ring.  相似文献   

15.
Phytochrome is a key photoregulation pigment in plants which determines the strategy of their development throughout their life cycle. The major achievement in the recent investigations of the pigment is the discovery of its structural and functional heterogeneity: existence of a family of phytochromes (phyA-phyE) differing by the apoprotein was demonstrated. We approach this problem by investigating the chromophore component of the pigment with the use of the developed method of in vivo low-temperature fluorescence spectroscopy of phytochrome. In etiolated plants, phytochrome fluorescence was detected and attributed to its red-light absorbing form (Pr) and the first photoproduct (lumi-R), and a scheme of the photoreaction in phytochrome, a distinction of which is the activation barrier in the excited state, was put forward. It was found that the spectroscopic and photochemical characteristics of Pr depend on the plant species and phytochrome mutants and overexpressors used, on localization of the pigment in organs and tissues, plant age, effect of preillumination and other physiological factors. This variability of the parameters was interpreted as the existence of at least two phenomenological Pr populations, which differ by their spectroscopic characteristics and activation parameters of the Pr --> lumi-R photoreaction (in particular, by the extent of the Pr --> lumi-R photoconversion at low temperatures, gamma1): the longer-wavelength major and variable by its content in plant tissues Pr' with gamma1 = 0.5 and the shorter-wavelength minor relatively constant Pr" with gamma1 < or = 0.05. The analysis of the phytochrome mutants and overexpressors allows a conclusion that phytochrome A (phyA), which dominates in etiolated seedlings, is presented by two isoforms attributed to Pr' and Pr" (phyA' and phyA", respectively). Phytochrome B (phyB) accounts for less than 10% of the total phytochrome fluorescence and belongs to the Pr" type. It is also characterized by the relatively low extent of the Pr photoconversion into the far-red-light absorbing physiologically active phytochrome form, Pfr. Fluorescence of the minor phytochromes (phyC-phyE) is negligible. The recently discovered phytochrome of the cyanobacterium Synechocystis also belongs to the phenomenological Pr" type. PhyA' is a light-labile and soluble fraction, while phyA" is a relatively light-stable and, possibly, membrane (protein)-associated. Experiments with transgenic tobacco plants overexpressing full-length and C- and N-terminally truncated oat phytochrome A suggest that phyA' and phyA" might differ by the post-translational modification of the small N-terminal segment (amino acid residues 7-69) of the pigment. PhyA' is likely to be active in the de-etiolation processes while phyA" together with phyB, in green plants as revealed by the experiments on transgenic potato plants and phytochrome mutants of Arabidopsis and pea with altered levels of phytochromes A and B and modified phenotypes. And finally, within phyA', there are three subpopulations which are, possibly, different conformers of the chromophore. Thus, there is a hierarchical system of phytochromes which include: (i) different phytochromes; (ii) their post-translationally modified states and (iii) conformers within one molecular type. Its existence might be the rationale for the multiplicity of the photoregulation reactions in plants mediated by phytochrome.  相似文献   

16.
17.
Plants have developed sophisticated systems to monitor and rapidly acclimate to environmental fluctuations. Light is an essential source of environmental information throughout the plant’s life cycle. The model plant Arabidopsis thaliana possesses five phytochromes (phyA-phyE) with important roles in germination, seedling establishment, shade avoidance, and flowering. However, our understanding of the phytochrome signaling network is incomplete, and little is known about the individual roles of phytochromes and how they function cooperatively to mediate light responses. Here, we used a bottom-up approach to study the phytochrome network. We added each of the five phytochromes to a phytochrome-less background to study their individual roles and then added the phytochromes by pairs to study their interactions. By analyzing the 16 resulting genotypes, we revealed unique roles for each phytochrome and identified novel phytochrome interactions that regulate germination and the onset of flowering. Furthermore, we found that ambient temperature has both phytochrome-dependent and -independent effects, suggesting that multiple pathways integrate temperature and light signaling. Surprisingly, none of the phytochromes alone conferred a photoperiodic response. Although phyE and phyB were the strongest repressors of flowering, both phyB and phyC were needed to confer a flowering response to photoperiod. Thus, a specific combination of phytochromes is required to detect changes in photoperiod, whereas single phytochromes are sufficient to respond to light quality, indicating how phytochromes signal different light cues.  相似文献   

18.
We show that phytochromes modulate differentially various facets of light-induced ripening of tomato fruit (Solanum lycopersicum L.). Northern analysis demonstrated that phytochrome A mRNA in fruit accumulates 11.4-fold during ripening. Spectroradiometric measurement of pericarp tissues revealed that the red to far-red ratio increases 4-fold in pericarp tissues during ripening from the immature-green to the red-ripe stage. Brief red-light treatment of harvested mature-green fruit stimulated lycopene accumulation 2. 3-fold during fruit development. This red-light-induced lycopene accumulation was reversed by subsequent treatment with far-red light, establishing that light-induced accumulation of lycopene in tomato is regulated by fruit-localized phytochromes. Red-light and red-light/far-red-light treatments during ripening did not influence ethylene production, indicating that the biosynthesis of this ripening hormone in these tissues is not regulated by fruit-localized phytochromes. Compression analysis of fruit treated with red light or red/far-red light indicated that phytochromes do not regulate the rate or extent of pericarp softening during ripening. Moreover, treatments with red or red/far-red light did not alter the concentrations of citrate, malate, fructose, glucose, or sucrose in fruit. These results are consistent with two conclusions: (a) fruit-localized phytochromes regulate light-induced lycopene accumulation independently of ethylene biosynthesis; and (b) fruit-localized phytochromes are not global regulators of ripening, but instead regulate one or more specific components of this developmental process.  相似文献   

19.
The primary photoprocesses of etiolated oat and pea phytochromes (Pr forms) are diffusion-modulated by the microscopic viscosity within the chromophore pocket. The chromophore pocket is preferentially accessible to glycerol but not to Ficoll. Glycerol preferentially retarded the rate (rate constant ca. 1-2 X 10(10) s-1) of the initial reaction from the Qy excited state of phytochrome, whereas it increased the long fluorescence lifetime (nanosecond) component that can be attributed to either an emitting intermediate or to modified/conformationally heterogeneous phytochrome populations. The picosecond time-resolved fluorescence spectra of different phytochrome preparations (i.e., full-length vs 6/10-kDa NH2-terminus truncated forms of phytochromes from monocot and dicot plants) revealed no significant differences. The spectra in the picosecond time scale showed no spectral shifts, but at longer time scales of up to approximately 1.90 ns, significant blue spectral shifts were observed. The shifts were more in the truncated than in the full-length pea phytochrome. Comparison of the fluorescence decay data and the picosecond time-resolved fluorescence spectra suggests differences in conformational flexibility/heterogeneity among the preparations of the monocot vs dicot phytochromes and the full-length native vs the amino terminus truncated phytochromes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号