首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The study of immune related genes in lampreys and hagfish provides a unique perspective on the evolutionary genetic underpinnings of adaptive immunity and the evolution of vertebrate genomes. Separated from their jawed cousins at the stem of the vertebrate lineage, these jawless vertebrates have many of the gene families and gene regulatory networks associated with the defining morphological and physiological features of vertebrates. These include genes vital for innate immunity, inflammation, wound healing, protein degradation, and the development, signaling and trafficking of lymphocytes. Jawless vertebrates recognize antigen by using leucine-rich repeat (LRR) based variable lymphocyte receptors (VLRs), which are very different from the immunoglobulin (Ig) based T cell receptor (TCR) and B cell receptor (BCR) used for antigen recognition by jawed vertebrates. The somatically constructed VLR genes are expressed in monoallelic fashion by T-like and B-like lymphocytes. Jawless and jawed vertebrates thus share many of the genes that provide the molecular infrastructure and physiological context for adaptive immune responses, yet use entirely different genes and mechanisms of combinatorial assembly to generate diverse repertoires of antigen recognition receptors.  相似文献   

3.
病毒是一种极具感染性和传染性的病原微生物.当病毒感染机体以后,机体会通过激活免疫系统来进行防御.高等哺乳动物的免疫系统分为两大类:适应性免疫系统和天然免疫系统.适应性免疫系统主要通过T淋巴细胞和B淋巴细胞特异性地识别入侵的病毒并将其清除.而天然免疫系统主要通过模式识别受体识别病毒的入侵,进而产生一系列的细胞因子抵抗病毒的入侵.其中,天然免疫系统作为抵御病毒入侵的第一道防线和激活后续适应性免疫的先决条件在整个抗病毒免疫反应中发挥着十分重要的作用.  相似文献   

4.
The evolution and genetics of innate immunity   总被引:2,自引:0,他引:2  
The immune system provides protection from a wide range of pathogens. One component of immunity, the phylogenetically ancient innate immune response, fights infections from the moment of first contact and is the fundamental defensive weapon of multicellular organisms. The Toll family of receptors has a crucial role in immune defence. Studies in fruitflies and in mammals reveal that the defensive strategies of invertebrates and vertebrates are highly conserved at the molecular level, which raises the exciting prospects of an increased understanding of innate immunity.  相似文献   

5.
The antigen receptors on cells of innate immune systems recognizebroadly expressed markers on non-host cells while the receptorson lymphocytes of the adaptive immune system display a higherlevel of specificity. Adaptive immunity, with its exquisitespecificity and immunological memory, has only been found inthe jawed vertebrates, which also display innate immunity. Jawlessfishes and invertebrates only have innate immunity. In the adaptiveimmune response, T and B-lymphocytes detect foreign agents orantigens using T cell receptors (TCR) or immunoglobulins (Ig),respectively. While Ig can bind free intact antigens, TCR onlybinds processed antigenic fragments that are presented on moleculesencoded in the major histocompatibility complex (MHC). MHC moleculesdisplay variation through allelic polymorphism. A diverse repertoireof Ig and TCR molecules is generated by gene rearrangement andjunctional diversity, processes carried out by the recombinaseactivating gene (RAG) products and terminal deoxynucleotidyltransferase (TdT). Thus, the molecules that define adaptiveimmunity are TCR, Ig, MHC molecules, RAG products and TdT. Nodirect predecessors of these molecules have been found in thejawless fishes or invertebrates. In contrast, the complementcascade can be activated by either adaptive or innate immunesystems and contains examples of molecules that gradually evolvedfrom non-immune functions to being part of the innate and thenadaptive immune system. In this paper we examine the moleculesof the adaptive immune system and speculate on the existenceof direct predecessors that were part of innate immunity.  相似文献   

6.
The evolution of adaptive immune systems   总被引:11,自引:0,他引:11  
Cooper MD  Alder MN 《Cell》2006,124(4):815-822
A clonally diverse anticipatory repertoire in which each lymphocyte bears a unique antigen receptor is the central feature of the adaptive immune system that evolved in our vertebrate ancestors. The survival advantage gained through adding this type of adaptive immune system to a pre-existing innate immune system led to the evolution of alternative ways for lymphocytes to generate diverse antigen receptors for use in recognizing and repelling pathogen invaders. All jawed vertebrates assemble their antigen-receptor genes through recombinatorial rearrangement of different immunoglobulin or T cell receptor gene segments. The surviving jawless vertebrates, lampreys and hagfish, instead solved the receptor diversification problem by the recombinatorial assembly of leucine-rich-repeat genetic modules to encode variable lymphocyte receptors. The convergent evolution of these remarkably different adaptive immune systems involved innovative genetic modification of innate-immune-system components.  相似文献   

7.
 Protein phylogenies were used to test the hypothesis that aspects of the innate immune system of vertebrates have been conserved since the last common ancestor of vertebrates and arthropods. The phylogeny of lysozymes showed evidence of conservation of function, but phylogenies of seven other protein families did not. Natural resistance-associated macrophage protein, nitric oxide synthetase, and serine protease families all showed a pattern of gene duplication within vertebrates after their divergence from arthropods, giving rise to immune system-expressed genes in vertebrates. Insect hemolin, a member of the immunoglobulin superfamily, was found not to be closely related to members of that family having an immune system role in vertebrates; rather, it appeared most closely related to both arthropod and vertebrate molecules expressed in the nervous system. Thus, hemolin seems to have evolved its role independently in insects, probably through duplication of a neuroglian-like ancestor. Furthermore, vertebrate immune system-expressed serpins, chitinases, and pentraxins were found to lack orthologous relationships with arthropod members of the same families also functioning in immunity. Therefore members of these families have evolved immune system functions independently in the two phyla. It is now widely recognized that the specific immune system of vertebrates has no counterpart in invertebrates; these phylogenetic analyses suggest that there is a similar evolutionary discontinuity with respect to innate immunity as well. Received: 10 May 1997 / Revised: 10 September 1997  相似文献   

8.
The immune gene repertoire encoded in the purple sea urchin genome   总被引:1,自引:0,他引:1  
Echinoderms occupy a critical and largely unexplored phylogenetic vantage point from which to infer both the early evolution of bilaterian immunity and the underpinnings of the vertebrate adaptive immune system. Here we present an initial survey of the purple sea urchin genome for genes associated with immunity. An elaborate repertoire of potential immune receptors, regulators and effectors is present, including unprecedented expansions of innate pathogen recognition genes. These include a diverse array of 222 Toll-like receptor (TLR) genes and a coordinate expansion of directly associated signaling adaptors. Notably, a subset of sea urchin TLR genes encodes receptors with structural characteristics previously identified only in protostomes. A similarly expanded set of 203 NOD/NALP-like cytoplasmic recognition proteins is present. These genes have previously been identified only in vertebrates where they are represented in much lower numbers. Genes that mediate the alternative and lectin complement pathways are described, while gene homologues of the terminal pathway are not present. We have also identified several homologues of genes that function in jawed vertebrate adaptive immunity. The most striking of these is a gene cluster with similarity to the jawed vertebrate Recombination Activating Genes 1 and 2 (RAG1/2). Sea urchins are long-lived, complex organisms and these findings reveal an innate immune system of unprecedented complexity. Whether the presumably intense selective processes that molded these gene families also gave rise to novel immune mechanisms akin to adaptive systems remains to be seen. The genome sequence provides immediate opportunities to apply the advantages of the sea urchin model toward problems in developmental and evolutionary immunobiology.  相似文献   

9.
Immune systems evolve as essential strategies to maintain homeostasis with the environment, prevent microbial assault and recycle damaged host tissues. The immune system is composed of two components, innate and adaptive immunity. The former is common to all animals while the latter consists of a vertebrate-specific system that relies on somatically derived lymphocytes and is associated with near limitless genetic diversity as well as long-term memory. Deuterostome invertebrates provide a view of immune repertoires in phyla that immediately predate the origins of vertebrates. Genomic studies in amphioxus, a cephalochordate, have revealed homologs of genes encoding most innate immune receptors found in vertebrates; however, many of the gene families have undergone dramatic expansions, greatly increasing the innate immune repertoire. In addition, domain-swapping accounts for the innovation of new predicted pathways of receptor function. In both amphioxus and Ciona, a urochordate, the VCBPs (variable region containing chitin-binding proteins), which consist of immunoglobulin V (variable) and chitin binding domains, mediate recognition through the V domains. The V domains of VCBPs in amphioxus exhibit high levels of allelic complexity that presumably relate to functional specificity. Various features of the amphioxus immune repertoire reflect novel selective pressures, which likely have resulted in innovative strategies. Functional genomic studies underscore the value of amphioxus as a model for studying innate immunity and may help reveal how unique relationships between innate immune receptors and both pathogens and symbionts factored in the evolution of adaptive immune systems.  相似文献   

10.
Surfactant protein A (SP-A) and alveolar macrophages are essential components of lung innate immunity. Alveolar macrophages phagocytose and kill pathogens by the production of reactive oxygen and nitrogen species. In particular, peroxynitrite, the reaction product of superoxide and nitric oxide, appears to have potent antimicrobial effects. SP-A stimulates alveolar macrophages to phagocytose and kill pathogens and is important in host defense. However, SP-A has diverse effects on both innate and adaptive immunity, and may stimulate or inhibit immune function. SP-A appears to mediate toxic or protective effects depending on the immune status of the lung. In contrast to mouse or rat cells, it has been difficult to demonstrate nitric oxide production by human macrophages. We have recently demonstrated that human macrophages produce nitric oxide and use it to kill Klebsiella pneumoniae. SP-A either stimulates or inhibits this process, depending on the activation state of the macrophage. Given its diverse effects on immune function, SP-A may prove to be an effective therapy for both infectious and inflammatory diseases of the lung.  相似文献   

11.
Surfactant protein A (SP-A) and alveolar macrophages are essential components of lung innate immunity. Alveolar macrophages phagocytose and kill pathogens by the production of reactive oxygen and nitrogen species. In particular, peroxynitrite, the reaction product of superoxide and nitric oxide, appears to have potent antimicrobial effects. SP-A stimulates alveolar macrophages to phagocytose and kill pathogens and is important in host defense. However, SP-A has diverse effects on both innate and adaptive immunity, and may stimulate or inhibit immune function. SP-A appears to mediate toxic or protective effects depending on the immune status of the lung. In contrast to mouse or rat cells, it has been difficult to demonstrate nitric oxide production by human macrophages. We have recently demonstrated that human macrophages produce nitric oxide and use it to kill Klebsiella pneumoniae. SP-A either stimulates or inhibits this process, depending on the activation state of the macrophage. Given its diverse effects on immune function, SP-A may prove to be an effective therapy for both infectious and inflammatory diseases of the lung.  相似文献   

12.
梁佼  刘欣  吴芬芳  李庆伟 《遗传》2009,31(10):969-976
在以七鳃鳗和盲鳗为代表的无颌类脊椎动物中, 虽然发现了与有颌类脊椎动物T细胞受体(T-cell receptors, TLRs)、B细胞受体 (B-cell receptors, BCRs)可变区具有相似结构的先天性免疫受体, 却从未发现有颌类脊椎动物适应性免疫系统的核心组分: TCRs、BCRs、组织相容性复合体 (Major histocompatibility complex, MHC)。因此, 长期以来, 人们一直认为适应性免疫系统只存在于有颌类脊椎动物中。但最近的一项发现彻底改变了这一传统观念, 即在无颌类脊椎动物中, 存在一种新型可变淋巴细胞受体VLRs(Variable lymphocyte receptors), VLRs通过改变亮氨酸富集序列LRRs(Leucine-rich repeats)的插入情况, 实现对特异性抗原的高效识别。晶体衍射分析发现, 盲鳗的VLRs呈现一种“马蹄”型结构, 抗原结合位点则位于“马蹄”的凹面区。分泌型的VLRs以四聚体或五聚体的形式识别、结合特异性抗原。综上所述, 无颌类和有颌类脊椎动物应用不同的抗原识别系统完成适应性免疫反应。文章对近年来无颌类脊椎动物适应性免疫系统相关分子的研究进展加以概述, 为揭示适应性免疫系统起源与进化问题提供有益参考。  相似文献   

13.
14.
From early on in evolution, organisms have had to protect themselves from pathogens. Mechanisms for discriminating "self" from "non-self" evolved to accomplish this task, launching a long history of host-pathogen co-evolution. Evolution of mechanisms of immune defense has resulted in a variety of strategies. Even unicellular organisms have rich arsenals of mechanisms for protection, such as restriction endonucleases, antimicrobial peptides, and RNA interference.In multicellular organisms, specialized immune cells have evolved, capable of recognition, phagocytosis, and killing of foreign cells as well as removing their own cells changed by damage, senescence, infection, or cancer. Additional humoral factors, such as the complement cascade, have developed that co-operate with cellular immunity in fighting infection and maintaining homeostasis. Defensive mechanisms based on germline-encoded receptors constitute a system known as innate immunity. In jaw vertebrates, this system is supplemented with a second system, adaptive immunity, which in contrast to innate immunity is based on diversification of immune receptors and on immunological memory in each individual.Usually, each newly evolved defense mechanism did not replace the previous one, but supplemented it, resulting in a layered structure of the immune system. The immune system is not one system but rather a sophisticated network of various defensive mechanisms operating on different levels, ranging from mechanisms common for every cell in the body to specialized immune cells and responses at the level of the whole organism. Adaptive changes in pathogens have shaped the evolution of the immune system at all levels.  相似文献   

15.
Recent studies have suggested that innate immune responses exhibit characteristics associated with memory linked to modulations in both vertebrates and invertebrates. However, the diverse evolutionary paths taken, particularly within the invertebrate taxa, should lead to similarly diverse innate immunity memory processes. Our understanding of innate immune memory in invertebrates primarily comes from studies of the fruit fly Drosophila melanogaster, the generality of which is unclear. Caenorhabditis elegans typically inhabits soil harboring a variety of fatal microbial pathogens; for this invertebrate, the innate immune system and aversive behavior are the major defensive strategies against microbial infection. However, their characteristics of immunological memory remains infantile. Here we discovered an immunological memory that promoted avoidance and suppressed innate immunity during reinfection with bacteria, which we revealed to be specific to the previously exposed pathogens. During this trade-off switch of avoidance and innate immunity, the chemosensory neurons AWB and ADF modulated production of serotonin and dopamine, which in turn decreased expression of the innate immunity-associated genes and led to enhanced avoidance via the downstream insulin-like pathway. Therefore, our current study profiles the immune memories during C. elegans reinfected by pathogenic bacteria and further reveals that the chemosensory neurons, the neurotransmitter(s), and their associated molecular signaling pathways are responsible for a trade-off switch between the two immunological memories.  相似文献   

16.
The review deals with the mechanisms of innate immunity in plants focusing on families of pattern-recognition receptors and incorporates recent data on complete sequencing of several plant genomes. Plant immune response involves several families of receptors, both membrane-bound and cytoplasmic ones, containing conservative leucine-rich repeats. The lack of adaptive immunity and the associated rearrangements in the immune receptor genes in plants is partly counterbalanced by genetically encoded mechanisms of specific immunity to particular pathogens. There is a certain similarity between intracellular signal transduction and effector mechanisms in plant and animal innate immune systems, although the latter are considerably more complex.  相似文献   

17.
CD45, originally known as the leukocyte common antigen, is a prototypical transmembrane protein tyrosine phosphatase that plays a critical role in signal transduction through T-cell and B-cell receptors, as well as in T-cell and B-cell development. In the present study, we show that the Pacific hagfish, widely believed to lack the adaptive immune system, has CD45. The presence of CD45 in jawless fish is consistent with the recent discovery that CD45 also plays a crucial role in innate immunity via the regulation of signaling through type I and type II cytokine receptors. It is likely that CD45 was recruited to activate lymphocytes through antigen receptors encoded by rearranging genes in jawed vertebrates.  相似文献   

18.
19.
Both jawless vertebrates, such as lampreys and hagfish, and jawed vertebrates (encompassing species as diverse as sharks and humans) have an adaptive immune system that is based on somatically diversified and clonally expressed antigen receptors. Although the molecular nature of the antigen receptors and the mechanisms of their assembly are different, recent findings suggest that the general design principles underlying the two adaptive immune systems are surprisingly similar. The identification of such commonalities promises to further our understanding of the mammalian immune system and to inspire the development of new strategies for medical interventions targeting the consequences of faulty immune functions.  相似文献   

20.
The innate immune system provides the first line of defence against infection. Through a limited number of germline-encoded receptors called pattern recognition receptors (PRRs), innate cells recognize and are activated by highly conserved structures expressed by large group of microorganisms called pathogen-associated molecular patterns (PAMPs). PRRs are involved either in recognition (scavenger receptors, C-type lectins) or in cell activation (Toll-like receptors or TLR, helicases and NOD molecules). TLRs play a pivotal role in cell activation in response to PAMPs. TLR are type I transmembrane proteins characterized by an intracellular Toll/IL 1 receptor homology domain that are expressed by innate immune cells (dendritic cells, macrophages, NK cells), cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, fibroblasts). In all the cell types analyzed, TLR agonists, alone or in combination with costimulatory molecules, induce cell activation. The crucial role played by TLR in immune cell activation has been detailed in dendritic cells. A TLR-dependent activation of dendritic cells is required to induce their maturation and migration to regional lymph nodes and to activate na?ve T cells. The ability of different cell types to respond to TLR agonists is related to the pattern of expression of the TLRs and its regulation as well as their intracellular localization. Recent studies suggest that the nature of the endocytic and signaling receptors engaged by PAMPs may determine the nature of the immune response generated against the microbial molecules, highlighting the role of TLRs as molecular interfaces between innate and adaptive immunity. In this review are summarized the main biological properties of the TLR molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号