首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to test the applicability of indices of muscle fatigue to interference EMG signals detected at various distances from the end-plate region during isometric voluntary contractions at different force levels. Bar electrode with 12 leading off surfaces and 5 mm inter-pole distance was used to detect EMG from human m. biceps brachii. The sensitivity of the new spectral indices to detect muscle fatigue was higher than that of mean or median frequencies. Considerable variations in the characteristic frequencies and values of spectral indices that could reflect recruitment and/or rotation of MUs were found under submaximal efforts. The increase of the indices was considered as a sign of peripheral muscle fatigue while their decreasing could be a sign of de-recruitment of fatigued or/and recruitment of new MUs reflecting central fatigue. The sensitivity of the indices to fatigue depended on the electrode arrangement and its longitudinal position in respect of the end-plate region and ends of the muscle fibres. It was larger for the electrodes placed in the middle of the semi-fibre. To overcome the problem with inappropriate position of the electrode, one could use an electrode whose longitudinal dimension would cover the entire semi-length of the analyzed fibres.  相似文献   

2.
Achilles tendon mechanics influence plantar flexion force steadiness (FS) and balance. In the upper limb, elbow flexor FS is greater in supinated and neutral forearm orientations compared to pronated, with contributions of tendon mechanics remaining unknown in position-dependent FS. This study investigated whether distal biceps brachii (BB) tendon mechanics across supinated, neutral and pronated forearm orientations influence position-dependent FS of the elbow flexors. Eleven males (23 ± 3 years) performed submaximal isometric elbow flexion tasks at low (5, 10% maximal voluntary contraction (MVC)) and high (25, 50, 75% MVC) force levels in supinated, neutral and pronated forearm orientations. Distal BB tendon elongation and CSA were recorded on ultrasound to calculate mechanics of tendon stress, strain and stiffness. Relationships between FS, calculated as coefficient of variation (CV) of force, and tendon mechanics were evaluated with multiple regressions. Supinated and neutral were ∼50% stronger and ∼60% steadier than pronated (p < 0.05). Tendon stress was ∼52% greater in supinated and neutral compared to pronated, tendon strain was ∼36% greater in neutral than pronated (p < 0.05), while tendon stiffness (267.4 ± 78.9 N/mm) did not differ across orientations (p > 0.05). At low forces, CV of force was predicted by MVC (r2: 0.52) in supinated, and MVC and stress in neutral and pronated (r2: 0.65–0.81). At high force levels, CV of force was predicted by MVC and stress in supinated (r2: 0.49), and MVC in neutral (r2: 0.53). Absolute strength and tendon mechanics influence the ability of the BB tendon to distribute forces, and thus are key factors in position-dependent FS.  相似文献   

3.
This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOI(min)), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMG(RMS)) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOI(min), and EMG(RMS) during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOI(min), mean total hemoglobin volume, maximum total hemoglobin volume, and EMG(RMS) during exercise. Smaller (P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOI(min) did not change, but EMG(RMS) increased 1-4 days following ECC1 and ECC2. During 100% MVC tasks, EMG(RMS) did not change, but torque and TOI(min) decreased 1-4 days following ECC1 and ECC2. TOI(min) during 100% MVC tasks and EMG(RMS) during 30% MVC tasks recovered faster (P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.  相似文献   

4.
Experiments were carried out to examine whether innervation zone (IZ) location remains stable at different levels of isometric contraction in the biceps brachii muscle (BB), and to determine how the proximity of the IZ affects common surface electromyography (sEMG) parameters. Twelve subjects performed maximal (MVC) and submaximal voluntary isometric contractions at 10%, 20%, 30%, 40%, 50% and 75% of MVC. sEMG signals were recorded with a 13 rows × 5 columns grid of electrodes from the short head of BB. The IZ shifted in the proximal direction by up to 2.4 cm, depending upon the subject and electrode column. The mean shift of all the columns was 0.6 ± 0.4 cm (10% vs. 100% MVC, P < 0.001). This shift biased the average values of mean frequency (+21.8 ± 9.9 Hz, P < 0.001), root mean square (?0.16 ± 0.15 mV, P < 0.05) and conduction velocity (?1.15 ± 0.93 m/s, P < 0.01) in the channels immediately proximal to the IZ. The shift in IZ could be explained by shortening of the muscle fibers, and thus lengthening of the (distal) tendon due to increasing force. These results underline the importance of individual investigation of IZ locations before the placement of sEMG electrodes, even in isometric contractions.  相似文献   

5.
In surface electromyography (sEMG), the distribution of motor unit potential (MUP) velocities has been shown to reflect the proportion of faster and slower propagating MUPs. This study investigated whether the distribution of MUP velocities could distinguish between sprinters and endurance athletes in not-specifically trained muscle (biceps brachii). sEMG results were acquired from 15 sprinters and 18 endurance athletes during short static contractions (3.8 s) at three force levels: unloaded, 10% and 20% of maximum voluntary contraction. The features extracted from the sEMG were: the mean muscle conduction velocity (CV) – estimated using the inter-peak latency and the cross-correlation methods, the within-subject skewness of MUP velocities (expressing the relative proportions of faster and slower propagating MUPs), and the within-subject standard deviation of MUP velocities. Sprinters had a higher CV than endurance athletes using both methods. Sprinters also demonstrated a greater proportion of fast propagating MUPs, as indicated by the skewness. Thus, the distribution of MUP velocities was able to demonstrate physiological differences between sprinters and endurance athletes during short contractions at low forces. The findings can be extrapolated to the motor unit level. Since the investigated muscle was not involved in specific training, the differences seem to reflect inherited properties.  相似文献   

6.
In surface electromyography (sEMG), the distribution of motor unit potential (MUP) velocities has been shown to reflect the proportion of faster and slower propagating MUPs. This study investigated whether the distribution of MUP velocities could distinguish between sprinters (n = 11) and endurance athletes (n = 12) in not-specifically trained muscle (biceps brachii) during prolonged dynamic exercises at low forces. sEMG was acquired during 4 min’ exercises: unloaded, 5%, 10% and 20% of maximal voluntary contraction (MVC). The features extracted from the sEMG were: the mean muscle conduction velocity – estimated using the inter-peak latency and cross-correlation methods, the within-subject skewness (expressing the proportions of faster and slower propagating MUPs) and the within-subject standard deviation of MUP velocities (SD-mup). Sprinters showed a greater proportion of faster propagating MUPs than endurance athletes. During fatigue, the SD-mup of sprinters broadened progressively, whereas that of endurance athletes did not. The findings suggest that sprinters conveyed a greater proportion of faster motor units than endurance athletes and that motor unit behavior during fatigue differed between groups. Thus, the distribution of MUP velocities enables distinction between a muscle of sprinters and endurance athletes during prolonged dynamic exercises at low forces.  相似文献   

7.
The relationship between acoustic myography (AMG), electromyography (EMG) and force during submaximal dynamic contractions was examined in the biceps brachii muscles of eight healthy males (aged 17-26 years). Different weights were lifted and lowered at a constant speed, using a wall pulley system, to perform concentric and eccentric contractions, respectively. Integrated AMG (iAMG) and integrated EMG (iEMG) activity both increased linearly with force during concentric (iAMG r = 0.94; iEMG r = 0.99) and eccentric (iAMG r = 0.90; iEMG r = 0.94) contractions. The slopes of the concentric regression lines were significantly different from the eccentric slopes (P less than 0.01) for both iAMG and iEMG with concentric contractions showing greater levels of activity. The results indicated that AMG can be used to detect changes in force during dynamic contractions which has important implications for the use of AMG in rehabilitation. The differences in iAMG activity between concentric and eccentric contractions are discussed in relationship to the origin of the AMG signal.  相似文献   

8.
Force (F) reduction is reported with myotendinous junction (MTJ) manipulation. Autogenic inhibition reflex (AIR) activation is supposed to be the main mechanism. Still, its role remains unclear. The study aimed at assessing the effects of MTJ direct inhibitory pressure (DIP) on neuromuscular activation and F in the elbow flexor (agonist) and extensor (antagonist) muscles. After maximum voluntary contraction (MVC) assessment, thirty-five participants randomly performed submaximal contractions at 20, 40, 60, and 80% MVC. Electromyographic (EMG), mechanomyographic (MMG), and F signals were recorded. Protocol was repeated under (i) DIP (10-s pressure on the biceps brachii MTJ) with the elbow at 120° (DIP120), (ii) DIP with the elbow at 180° (DIP180), and (iii) without DIP (Ctrl). Electromechanical delay (EMD) components, EMG and MMG root mean square (RMS), and rate of force development (RFD) were calculated. Independently from the angle, DIP induced decrements in MVC, RFD, and RMS of EMG and MMG signals and lengthened the EMD components in agonist muscles (P < 0.05). The DIP-induced decrease in F output of the agonist muscles seems to be possibly due to a concomitant impairment of the neuromuscular activation and a transient decrease in stiffness. After DIP, the antagonist muscle displayed no changes; therefore, the intervention of AIR remains questionable.  相似文献   

9.
The biceps brachii of horses is subdivided into a lateral and medial head. Electrophoresis of samples from the lateral head revealed three slow-migrating native myosin isoforms, including one that does not correspond to slow myosin isoforms described for other mammalian muscles. In contrast, the medial head contained a single slow isoform. Both the lateral and medial heads contained three fast-migrating isoforms corresponding with the FM-2, FM-3 and FM-4 isoforms reported for other mammalian fast-twitch muscle fibers. Electrophoresis of myosin heavy chains (MHCs) revealed only two MHC bands, one fast-migrating band that comigrates with rat type I MHC and a second slower-migrating band that comigrates with rat type IIa MHC. Quantitation of the histochemical data is correlated with densitometric analysis of MHCs in the medial and lateral heads of biceps brachii and is consistent with previously hypothesized functional specializations of this muscle.  相似文献   

10.
In the present study the influence of speed of contraction on the interplay between recruitment and firing rate of motor units (MUs) was assessed. The surface electromyographic (sEMG) signal was recorded in nine healthy subjects from the right biceps brachii using a linear electrode array during ramp isometric contractions (from 0 to 100% of the maximal voluntary force, MVC) at 5, 10, and 20% MVC s(-1) (ramp phase), followed by 10 s of sustained MVC (hold phase). The median frequency (MDF), Root Mean Square (RMS) and conduction velocity (CV) of sEMG, were computed on adjacent epochs covering a force range of 5% MVC each. Full motor unit recruitment (FMUR) point was assessed as the force level at which MDF reached its maximum value; the MDF decay during the hold phase was taken as an index of localized muscle fatigue. At 5% MVC s(-1), FMUR was reached at 52.3% MVC. At 10%MVC s(-1) FMUR was achieved at 58% MVC; while at 20% MVC s(-1) FMUR point was located at 77% MVC, being statistically different from 5 and 10% MVCs(-1) ramps (p<0.05). The MDF decay was steeper at higher speed. CV modifications mirrored those reported for MDF. The RMS increased in a curvilinear fashion and the maximum value was always attained during the hold phase. Our findings suggest that MU recruitment strategies are significantly related to the speed of contraction even in a single muscle.  相似文献   

11.
An experiment was carried out to investigate the myoelectrical manifestations of fatigue of the Biceps Brachii and Brachioradialis muscles in low-level (15% MVC) prolonged isometric and dynamic contractions. The range of the joint angle was 70-110 degrees and the mean speed of flexion and extension was about 33.33 degrees /s (1.2 s for 40 degrees ). The use of Wavelet transform (IMNF) in weakly stationary dynamic SEMG signals was validated in comparison with the Fourier transform (MPF). The development of fatigue and its myoelectrical manifestations (increase in RMS and decrease in mean frequency) in dynamic contractions show no deviations from what is found in literature for both spectral estimation techniques. The benefit of Wavelets is its future use in non-stationary conditions. Lower IMNF slopes in dynamic compared to isometric contractions for Biceps Brachii might be an indication that wavelets reflect more the changes in muscle fiber propagation velocity. The results of the use of Wavelet transform in detecting frequency modulations in different movement phases of the dynamic tests show that in the eccentric phase a systematic shift towards lower frequencies occurs. It also reveals the great possibilities of phase separation using Wavelets with high resolution and low interaction.  相似文献   

12.
Motor unit (MU) synchronization is the simultaneous or near-simultaneous firing of two MUs which occurs more often than would be expected by chance. The present study sought to investigate the effects of exercise training, muscle group, and force level, by comparing the magnitude of synchronization in the biceps brachii (BB) and first dorsal interosseous (FDI) muscles of untrained and strength-trained college-aged males at two force levels, 30% of maximal voluntary contraction (MVC) and 80% MVC. MU action potentials were recorded directly via an intramuscular needle electrode. The magnitude of synchronization was assessed using previously-reported synchronization indices: k′, E, and CIS. Synchronization was significantly higher in the FDI than in the BB. Greater synchronization was observed in the strength-trained group with CIS, but not with E or k′. Also, synchronization was significantly greater at 80% MVC than at 30% MVC with E, but only moderately greater with CIS and there was no force difference with k′. Synchronization prevalence was found to be greater in the BB (80.1%) than in the FDI (71.5%). Thus, although the evidence is a bit equivocal, it appears that MU synchronization is greater at higher forces, and greater in strength-trained individuals than in untrained subjects.  相似文献   

13.
The biceps brachii of horses is a complex muscle subdivided into two heads which may subserve distinct functions. The lateral head contains a large percentage of type I myofibers. This region is largely composed of short fibers (5-7 mm long) arranged in a pinnate fashion and heavily invested with connective tissue. The medial head contains fewer type I fibers and is composed of relatively longer myofibers (15-20 mm long), also arranged in a pinnate fashion but less heavily invested with connective tissue. It is hypothesized that the lateral muscle head of biceps brachii contributes to the postural role of the muscle in the forelimb passive stay apparatus. The medial head, with its longer fibers and generally fast fiber population may be most important during dynamic activity such as walking, trotting and running.  相似文献   

14.
Avoiding the innervation zone (IZ) is important when collecting surface electromyographic data. The purposes of this study were threefold: (1) to examine the precision of two different techniques for expressing IZ location for the biceps brachii, (2) to compare these locations between men and women, and (3) to determine if IZ movement with changes in elbow joint angle is related to different anthropometric measures. Twenty-four subjects (mean ± SD ages = 21.8 ± 3.5 yr) performed isometric contractions of the right forearm flexors at each of three separate elbow joint angles (90°, 120°, and 150° between the arm and forearm). During each contraction, the location of the IZ for the biceps brachii was visually identified using a linear electrode array. These IZ locations were expressed in both absolute (i.e. as a distance (mm) from the acromion process) and relative (i.e. as a percentage of humerus length) terms. The results suggested that the estimations of IZ location were more precise when expressed in relative versus absolute terms, and were generally different for men and women. The shift in IZ location with changes in elbow joint angle was not, owever, related to height, weight, or humerus length.  相似文献   

15.
The relationships of EMG and muscle force with elbow joint angle were investigated for muscle modelling purposes. Eight subjects had their arms fixed in an isometric elbow jig where the biceps brachii was electrically stimulated (30 Hz) and also in maximum voluntary contraction (MVC). Biceps EMG and elbow torque transduced at the wrist were recorded at 0.175 rad intervals through 1.75 rad of elbow extension. The results revealed that while the torque-length relationship displayed the classic inverted U pattern in both evoked and MVC conditions, the force-length relationship displayed a monotonically increasing pattern. Analyses of variance of the EMG data showed that there were no significant changes in the EMG amplitudes for the different joint angles during evoked or voluntary contractions. The result also showed that electrical stimulation can effectively isolated the torque-angle and force-length relationships of the biceps brachii and that the myoelectric signal during isometric contraction is uniform regardless of the length of the muscle or the joint angle.  相似文献   

16.
Adult human jaw muscles differ from limb and trunk muscles in enzyme-histochemical fibre type composition. Recently, we showed that the human masseter and biceps differ in fibre type pattern already at childhood. The present study explored the myosin heavy-chain (MyHC) expression in the young masseter and biceps muscles by means of gel electrophoresis (GE) and immuno-histochemical (IHC) techniques. Plasticity in MyHC expression during life was evaluated by comparing the results with the previously reported data for adult muscles. In young masseter, GE identified MyHC-I, MyHC-IIa MyHC-IIx and small proportions of MyHC-fetal and MyHC-α cardiac. Western blots confirmed the presence of MyHC-I, MyHC-IIa and MyHC-IIx. IHC revealed in the masseter six isomyosins, MyHC-I, MyHC-IIa, MyHC-IIx, MyHC-fetal, MyHC α-cardiac and a previously not reported isoform, termed MyHC-IIx'. The majority of the masseter fibres co-expressed two to four isoforms. In the young biceps, both GE and IHC identified MyHC-I, MyHC-IIa and MyHC-IIx. MyHC-I predominated in both muscles. Young masseter showed more slow and less-fast and fetal MyHC than the adult and elderly masseter. These results provide evidence that the young masseter muscle is unique in MyHC composition, expressing MyHC-α cardiac and MyHC-fetal isoforms as well as hitherto unrecognized potential spliced isoforms of MyHC-fetal and MyHC-IIx. Differences in masseter MyHC expression between young adult and elderly suggest a shift from childhood to adulthood towards more fast contractile properties. Differences between masseter and biceps are proposed to reflect diverse evolutionary and developmental origins and confirm that the masseter and biceps present separate allotypes of muscle.  相似文献   

17.
The spatial distributions of muscle innervation zone (IZ) and muscle fiber conduction velocity (CV) were examined in nine healthy young male participants. High-density surface electromyography (EMG) was collected from the biceps brachii muscle when subjects performed isometric elbow flexions at 20% to 80% of the maximal voluntary contraction (MVC). A total of 9498 samples of IZs were identified and CVs were calculated using the Radon transform. The center and width of IZ sample distribution were compared within four different force levels and six medial to lateral electrode column positions using repeated measures ANOVA and multiple comparison tests. Significant shifts of IZ center were observed in the medial columns (Columns 5, 6, and 7) compared with the lateral columns (Columns 3 and 4) (p < 0.05). Similarly, significant differences in the IZ width were found in Column 7 and 8 compared to Column 3 (p < 0.05). In contrast, muscle CV was unaffected by column position. Instead, muscle CV was faster at 40% and 80% MVC compared to 20% MVC (p < 0.05). The findings of this study add further insights into the physiological properties of the biceps brachii muscle.  相似文献   

18.
19.
The purpose of the present study was to assess the ability of TMG in detecting mechanical fatigue induced by two different resistance exercises on biceps brachii: high-volume (HV), and high-load (HL). Sixteen healthy subjects (age 25.1±2.6years; body mass 79.9±8.9kg; height 179±7.4cm) performed arm-curl in two different protocols (HV: 8×15×10kg, HL: 5×3×30kg). Tensiomyography was used to assess muscle response to both exercise protocols. The contractile capacity of biceps brachii significantly varied by means of the effects of potentiation and fatigue mechanisms that take place at different exercise phases. The most significant changes correspond to values of maximum radial displacement of muscle belly (D(m)), sustained contraction time (T(s)), relaxation time (T(r)), and contraction velocity (V(c)). The behavior of these parameters is, in general, similar in both exercise protocols, but they show subtle differences among them. During the first set, in both protocols, values for V(c) increase, along with a decrease in T(r), T(s), and D(m) values. Fatigue onset was evident from changes in such parameters, with HL being the first in showing these mechanisms. Tensiomyography has been shown to be highly sensitive in detecting fatigue-induced changes.  相似文献   

20.
The purpose of this investigation was to determine the influence of contraction velocity on the eccentric (ECC) and concentric (CON) torque production of the biceps brachii. After performing warm-up procedures, each male subject (n = 11) completed 3 sets of 5 maximal bilateral CON and ECC isokinetic contractions of the biceps at speeds of 90, 180, and 300 degrees x s(-1) on a Biodex System 3 dynamometer. The men received a 3-minute rest between sets and the order of exercises was randomized. Peak torque (Nm) values were obtained for CON and ECC contractions at each speed. Peak torque scores (ECC vs. CON) were compared using a t-test at each speed. A repeated measures analysis of variance was used to determine differences between speeds. ECC peak torque scores were greater than CON peak torque scores at each given speed: 90 degrees x s(-1), p = 0.0001; 180 degrees x s(-1), p = 0.0001; and 300 degrees x s(-1), p = 0.0001. No differences were found between the ECC peak torque scores (p = 0.62) at any of the speeds. Differences were found among the CON scores (p = 0.004). Post hoc analysis revealed differences between 90 degrees x s(-1) (114.61 +/- 23) and 300 degrees x s(-1) (94.17 +/- 18). These data suggest that ECC contractions of the biceps brachii were somewhat resistant to a force decrement as the result of an increase in velocity, whereas CON muscular actions of the biceps brachii were unable to maintain force as velocity increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号