首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Toluene diisocyanate (TDI) is a leading cause of occupational asthma. Although considerable controversy remains regarding its pathogenesis, TDI-induced asthma is an inflammatory disease of the airways characterized by airway remodeling. Peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to play a critical role in the control of airway inflammatory responses. However, no data are available on the role of PPARgamma in TDI-induced asthma. We have used a mouse model for TDI-induced asthma to determine the effect of PPARgamma agonist, rosiglitazone, or pioglitazone, and PPARgamma on TDI-induced bronchial inflammation and airway remodeling. This study with the TDI-induced model of asthma revealed the following typical pathophysiological features: increased numbers of inflammatory cells of the airways, airway hyperresponsiveness, increased levels of Th2 cytokines (IL-4, IL-5, and IL-13), adhesion molecules (ICAM-1 and VCAM-1), chemokines (RANTES and eotaxin), TGF-beta1, and NF-kappaB in nuclear protein extracts. In addition, the mice exposed to TDI developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer, subepithelial collagen deposition, and increased airway mucus production. Administration of PPARgamma agonists or adenovirus carrying PPARgamma2 cDNA reduced the pathophysiological symptoms of asthma and decreased the increased levels of Th2 cytokines, adhesion molecules, chemokines, TGF-beta1, and NF-kappaB in nuclear protein extracts after TDI inhalation. In addition, inhibition of NF-kappaB activation decreased the increased levels of Th2 cytokines, adhesion molecules, chemokines, and TGF-beta1 after TDI inhalation. These findings demonstrate a protective role of PPARgamma in the pathogenesis of the TDI-induced asthma phenotype.  相似文献   

3.
Chen YH  Wang PP  Wang XM  He YJ  Yao WZ  Qi YF  Tang CS 《Cytokine》2011,53(3):334-341
Hydrogen sulfide (H2S), recently considered the third endogenous gaseous transmitter, may have an important role in systemic inflammation. We investigated whether endogenous H2S may be a crucial mediator in airway responsiveness and airway inflammation in a rat model of chronic exposure to cigarette smoke (CS). Rats randomly divided into control and CS-exposed groups were treated with or without sodium hydrosulfide (NaHS, donor of H2S) or propargylglycine (PPG, inhibitor of cystathionine-γ-lyase [CSE], an H2S-synthesizing enzyme) for 4-month exposure. Serum H2S level and CSE protein expression in lung tissue were higher, by 2.04- and 2.33-fold, respectively, in CS-exposed rats than in controls (P < 0.05). Exogenous administration of NaHS to CS-exposed rats alleviated airway reactivity induced by acetylcholine (Ach) or potassium chloride (KCl) by 17.4% and 13.8%, respectively, decreased lung pathology score by 32.7%, inhibited IL-8 and TNF- α concentrations in lung tissue by 34.2% and 31.4%, respectively, as compared with CS-exposed rats (all P < 0.05). However, blocking endogenous CSE with PPG in CS-exposed rats increased airway reactivity induced by Ach or KCl, by 24.1% and 24.5%, respectively, and aggravated lung pathology score, by 44.8%, as compared with CS-exposed rats (all P < 0.01). Incubation in vitro with NaHS, 1–3 mmol/L, relaxed rat tracheal smooth muscle precontracted by Ach or KCl. However, the NaHS-induced relaxation was not blocked by glibenclamide (10?4 mol/L), L-NAME (10?4 mol/L), or ODQ (1 μmol/L) or denudation of epithelium. Endogenous H2S may have a protective role of anti-inflammation and bronchodilation in chronic CS-induced pulmonary injury.  相似文献   

4.
This study aims to explore the influences of Paraoxonase‐1 (PON1) involved in airway inflammation and remodeling in asthma. Mice were divided into control, asthma, asthma + PON1 and asthma + NC groups, and asthma models were established via aerosol inhalation of ovalbumin (OVA). HE, Masson, and PAS stains were used to observe airway inflammation and remodeling, Giemsa staining to assess inflammatory cells in bronchoalveolar lavage fluid (BALF), qRT‐PCR and Western blot to detect PON1 expression, lipid peroxidation and glutathione assays to quantify malondialdehyde (MDA) activity and glutathione peroxidase (GSH) levels, ELISA to determine inflammatory cytokines and immunoglobulin, and colorimetry to detect PON1 activities. Additionally, mice lung macrophages and fibroblasts were transfected with PON1 plasmid in vitro; ELISA and qRT‐PCR were performed to understand the effects of PON1 on inflammatory cytokines secreted by lung macrophages, MTT assay for lung fibroblasts proliferation and qRT‐PCR and Western blot for the expressions of PON1, COL1A1, and fibronectin. After overexpression of PON1, the asthma mice had decreased inflammatory cell infiltration, fibrosis degree, and airway wall thickness; inflammatory cells and inflammatory cytokines in BALF were also reduced, expressions of OVA‐IgE and IgG1, and MDA activity were decreased, but the expressions of OVA‐IgG2a and INF‐γ and GSH levels were increased. Besides, PON1 significantly inhibited microphage expression of LPS‐induced inflammatory cytokines, lung fibroblast proliferation, and COL1A1 and fibronectin expression. Thus, PON1 could relieve airway inflammation and airway remodeling in asthmatic mice and inhibit the secretion of LPS‐induced macrophage inflammatory cytokines and the proliferation of lung fibroblasts.  相似文献   

5.
Previous studies proved that bone marrow‐derived mesenchymal stem cells (BMSCs) could improve a variety of immune‐mediated disease by its immunomodulatory properties. In this study, we investigated the effect on airway remodeling and airway inflammation by administrating BMSCs in chronic asthmatic mice. Forty‐eight female BALB/c mice were randomly distributed into PBS group, BMSCs treatment group, BMSCs control group, and asthmatic group. The levels of cytokine and immunoglobulin in serum and bronchoalveolar lavage fluid were detected by enzyme‐linked immunosorbent assay. The number of CD4+CD25+regulatory T cells and morphometric analysis was determined by flow cytometry, hematoxylin‐eosin, immunofluorescence staining, periodic‐acid Schiff, and masson staining, respectively. We found that airway remodeling and airway inflammation were evident in asthmatic mice. Moreover, low level of IL‐12 and high levels of IL‐13, IL‐4, OVA‐specific IgG1, IgE, and IgG2a and the fewer number of CD4+CD25+regulatory T cells were present in asthmatic group. However, transplantation of BMSCs significantly decreased airway inflammation and airway remodeling and level of IL‐4, OVA‐specific IgE, and OVA‐specific IgG1, but elevated level of IL‐12 and the number of CD4 + CD25 + regulatory T cells in asthma (P < 0.05). However, BMSCs did not contribute to lung regeneration and had no significant effect on levels of IL‐10, IFN‐Y, and IL‐13. In our study, BMSCs engraftment prohibited airway inflammation and airway remodeling in chronic asthmatic group. The beneficial effect of BMSCs might involved the modulation imbalance cytokine toward a new balance Th1–Th2 profiles and up‐regulation of protective CD4 + CD25 + regulatory T cells in asthma, but not contribution to lung regeneration. J. Cell. Biochem. 114: 1595–1605, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Tryptase inhibition blocks airway inflammation in a mouse asthma model   总被引:11,自引:0,他引:11  
Release of human lung mast cell tryptase may be important in the pathophysiology of asthma. We examined the effect of the reversible, nonelectrophilic tryptase inhibitor MOL 6131 on airway inflammation and hyper-reactivity in a murine model of asthma. MOL 6131 is a potent selective nonpeptide inhibitor of human lung mast cell tryptase based upon a beta-strand template (K(i) = 45 nM) that does not inhibit trypsin (K(i) = 1,061 nM), thrombin (K(i) = 23, 640 nM), or other serine proteases. BALB/c mice after i.p. OVA sensitization (day 0) were challenged intratracheally with OVA on days 8, 15, 18, and 21. MOL 6131, administered days 18-21, blocked the airway inflammatory response to OVA assessed 24 h after the last OVA challenge on day 22; intranasal delivery (10 mg/kg) had a greater anti-inflammatory effect than oral delivery (10 or 25 mg/kg) of MOL 6131. MOL 6131 reduced total cells and eosinophils in bronchoalveolar lavage fluid, airway tissue eosinophilia, goblet cell hyperplasia, mucus secretion, and peribronchial edema and also inhibited the release of IL-4 and IL-13 in bronchoalveolar lavage fluid. However, tryptase inhibition did not alter airway hyper-reactivity to methacholine in vivo. These results support tryptase as a therapeutic target in asthma and indicate that selective tryptase inhibitors can reduce allergic airway inflammation.  相似文献   

7.

Animal models of asthma have shown that limonene, a naturally occurring terpene in citrus fruits, can reduce inflammation and airway reactivity. However, the mechanism of these effects is unknown. We first performed computational and molecular docking analyses that showed limonene could bind to both A2A and A2B receptors. The pharmacological studies were carried out with A2A adenosine receptor knock-out (A2AKO) and wild-type (WT) mice using ovalbumin (OVA) to generate the asthma phenotype. We investigated the effects of limonene on lung inflammation and airway responsiveness to methacholine (MCh) and NECA (nonselective adenosine analog) by administering limonene as an inhalation prior to OVA aerosol challenges in one group of allergic mice for both WT and KO. In whole-body plethysmography studies, we observed that airway responsiveness to MCh in WT SEN group was significantly lowered upon limonene treatment but no effect was observed in A2AKO. Limonene also attenuated NECA-induced airway responsiveness in WT allergic mice with no effect being observed in A2AKO groups. Differential BAL analysis showed that limonene reduced levels of eosinophils in allergic WT mice but not in A2AKO. However, limonene reduced neutrophils in sensitized A2AKO mice, suggesting that it may activate A2B receptors as well. These data indicate that limonene-induced reduction in airway inflammation and airway reactivity occurs mainly via activation of A2AAR but A2B receptors may also play a supporting role.

  相似文献   

8.
In this study, we attempt to determine whether lycopene regulates inflammatory mediators in the ovalbumin (OVA)-induced murine asthma model. To address this, mice were sensitized and challenged with OVA, and then treated with lycopene before the last OVA challenge. Administration of lycopene significantly alleviated the OVA-induced airway hyperresponsiveness to inhaled methacholine. Administration of lycopene also resulted in a significant inhibition of the infiltration of inflammatory immunocytes into the bronchoalveolar lavage, and attenuated the gelatinolytic activity of matrix metalloproteinase-9 and the expression of eosinophil peroxidase. Additionally, lycopene reduced the increased levels of GATA-3 mRNA level and IL-4 expression in OVA-challenged mice. However, it increased T-bet mRNA level and IFN-γ expression in lycopene-challenged mice. These findings provide new insight into the immunopharmacological role of lycopene in terms of its effects in a murine model of asthma.  相似文献   

9.
Ovalbumin (OVA) is the most frequently used allergen in animal models of asthma. Lipopolysaccharide (LPS) contaminating commercial OVA may modulate the evoked airway inflammatory response to OVA. However, the effect of LPS in OVA on airway remodeling, especially airway smooth muscle (ASM) has not been evaluated. We hypothesized that LPS in commercial OVA may enhance allergen-induced airway inflammation and remodeling. Brown Norway rats were sensitized with OVA on day 0. PBS, OVA, or endotoxin-free OVA (Ef-OVA) was instilled intratracheally on days 14, 19, 24. Bronchoalveolar lavage (BAL) fluid, lung, and intrathoracic lymph node tissues were collected 48 h after the last challenge. Immunohistochemistry for α-smooth muscle actin, Periodic-Acid-Schiff staining, and real-time qPCR were performed. Airway hyperresponsiveness (AHR) was also measured. BAL fluid macrophages, eosinophils, neutrophils, and lymphocytes were increased in OVA-challenged animals, and macrophages and neutrophils were significantly lower in Ef-OVA-challenged animals. The ASM area in larger airways was significantly increased in both OVA and Ef-OVA compared with PBS-challenged animals. The mRNA expression of IFN-γ and IL-13 in lung tissues and IL-4 in lymph nodes was significantly increased by both OVA and Ef-OVA compared with PBS and were not significantly different between OVA and Ef-OVA. Monocyte chemoattractant protein (MCP)-1 in BAL fluid and AHR were significantly increased in OVA but not in Ef-OVA. LPS contamination in OVA contributes to the influx of macrophages and MCP-1 increase in the airways and to AHR after OVA challenges but does not affect OVA-induced Th1 and Th2 cytokine expression, goblet cell hyperplasia, and ASM remodeling.  相似文献   

10.
AimsFudosteine is a cysteine derivative that is used as an expectorant in chronic bronchial inflammatory disorders. It has been shown to decrease the number of goblet cells in an animal model. This study examined the effects of fudosteine on airway inflammation and remodeling in a murine model of chronic asthma.Main methodsBALB/c mice were sensitized by an intraperitoneal injection of ovalbumin (OVA), and subsequently challenged with nebulized ovalbumin three days a week for four weeks. Seventy-two hours after the fourth challenge, airway hyperresponsiveness (AHR) and the cell composition of bronchoalveolar lavage (BAL) fluid were assessed. Fudosteine was administered orally at 10 mg/kg or 100 mg/kg body weight from the first to the fourth challenge.Key findingsWe investigated the effects of fudosteine on the development of allergic airway inflammation and airway hyperresponsiveness after chronic allergen challenges. The administration of fudosteine during the challenge with ovalbumin prevented the development of airway hyperresponsiveness and accumulation of lymphocytes in the airways. Eotaxin, IL-4, and TGF-β levels and the relative intensity of matrix metalloproteinase-2 and matrix metalloproteinase-9 (MMP-2 and MMP-9) in BAL fluid were reduced by the fudosteine treatment; however, the number of eosinophils in BAL fluid and serum IgE levels did not change. The expression of TGF-β, the development of goblet cell hyperplasia, subepithelial collagenization, and basement membrane thickening were also reduced by the fudosteine treatment.SignificanceThese results indicate that fudosteine is effective in reducing airway hyperresponsiveness, airway inflammation, and airway remodeling in a murine model of chronic asthma.  相似文献   

11.
Lipid mediators play an important role in modulating inflammatory responses. Platelet-activating factor (PAF) is a potent proinflammatory phospholipid with eosinophil chemotactic activity in vitro and in vivo. We show in this study that mice deficient in PAF receptor exhibited significantly reduced airway hyperresponsiveness to muscarinic cholinergic stimulation in an asthma model. However, PAF receptor-deficient mice developed an eosinophilic inflammatory response at a comparable level to that of wild-type mice. These results indicate an important role for PAF receptor, downstream of the eosinophilic inflammatory cascade, in regulating airway responsiveness after sensitization and aeroallergen challenge.  相似文献   

12.
Paeonol, the main active component isolated from Moutan Cortex, possesses extensive pharmacological activities such as anti-inflammatory, anti-allergic, and immunoregulatory effects. In the present study, we examined the effects of paeonol on airway inflammation and hyperresponsiveness in a mouse model of allergic asthma. BALB/c mice sensitized and challenged with ovalbumin were administered paeonol intragastrically at a dose of 100?mg/kg daily. Paeonol significantly suppressed ovalbumin-induced airway hyperresponsiveness to acetylcholine chloride. Paeonol administration significantly inhibited the total inflammatory cell and eosinophil count in bronchoalveolar lavage fluid. Treatment with paeonol significantly enhanced IFN-γ levels and decreased interleukin-4 and interleukin-13 levels in bronchoalveolar lavage fluid and total immunoglobulin E levels in serum. Histological examination of lung tissue demonstrated that paeonol significantly attenuated allergen-induced lung eosinophilic inflammation and mucus-producing goblet cells in the airway. These data suggest that paeonol exhibits anti-inflammatory activity in allergic mice and may possess new therapeutic potential for the treatment of allergic bronchial asthma.  相似文献   

13.
Marine algae have been utilized in food as well as medicine products for a variety of purposes. The purpose of this study was to determine whether an ethanol extract of Polyopes affinis (P.affinis) can inhibit the pathogenesis of T helper 2 (Th2)-mediated allergen-induced airway inflammation in a murine model of asthma. Mice that were sensitized and challenged with ovalbumin (OVA) evidenced typical asthmatic reactions such as the following: an increase in the number of eosinophils in the bronchoalveolar lavage (BAL) fluid; a marked influx of inflammatory cells into the lung around blood vessels and airways as well as the narrowing of the airway luminal; the development of airway hyperresponsiveness (AHR); the presence of pulmonary Th2 cytokines; and the presence of allergenspecific immunoglobulin E (IgE) in the serum. The successive intraperitoneal administration of P. affinis ethanolic extracts before the last airway OVA-challenge resulted in a significant inhibition of all asthmatic reactions. These data suggest that P. affinis ethanolic extracts possess therapeutic potential for the treatment of pulmonary allergic disorders such as allergic asthma.  相似文献   

14.
Endogenous production of hydrogen sulfide in mammals   总被引:7,自引:0,他引:7  
Kamoun P 《Amino acids》2004,26(3):243-254
Summary. Hydrogen sulfide is one of three gases involved in biological functions and synthesized in vivo. Like NO and CO, it seems to act as a neuromodulator: it modulates NMDA glutamate receptor function. CBS seems to be the only source of hydrogen sulfide in the brain, whereas the liver synthesizes hydrogen sulfide via cystathionase. In the heart, the third pathway for the hydrogen sulfide synthesis, the 3-mercaptopyruvate pathway is used. Only two diseases characterized by alterations of hydrogen sulfide metabolism have been described: decreased hydrogen sulfide synthesis in the brains of Alzheimers disease patients and increased hydrogen sulfide synthesis due to the overexpression of CBS in Down syndrome patients.  相似文献   

15.
Apoptosis and airway inflammation in asthma   总被引:2,自引:0,他引:2  
Asthma is a disease characterized by a chronic inflammation of the airways and by structural alterations of bron-chial tissues, often referred to as airway remodelling. The development of chronic airway inflammation in asthma depends upon the continuous recruitment of inflammatory cells from the bloodstream towards the bronchial mucosa and by their subsequent activation. It is however increasingly accepted that mechanisms involved in the regulation of the survival and apoptosis of inflammatory cells may play a central role in the persistent inflammatory process characterizing this disease. Increased cellular recruitment and activation, enhanced cell survival and cell:cell interactions are therefore the key steps in the development of chronic airway inflammation in asthma, and represent the major causes for tissue damge, repair and remodelling.  相似文献   

16.
Asthma was originally described as an inflammatory disease that predominantly involves the central airways. Pathological and physiological evidence reported during the past few years suggests that the inflammatory process extends beyond the central airways to the peripheral airways and the lung parenchyma. The small airways are capable of producing T-helper-2 cytokines, as well as chemokines, and they have recently been recognized as a predominant site of airflow obstruction in asthmatic persons. The inflammation at this distal site has been described as more severe than large airway inflammation. These findings are of great clinical significance, and highlight the need to consider the peripheral airways as a target in any therapeutic strategy for treatment of asthma.  相似文献   

17.
Resolvin E1 (RvE1; 5S, 12R, 18R-trihydroxyeicosapentaenoic acid) is an anti-inflammatory lipid mediator derived from the omega-3 fatty acid eicosapentaenoic acid (EPA). It has been recently shown that RvE1 is involved in the resolution of inflammation. However, it is not known whether RvE1 is involved in the resolution of asthmatic inflammation. To investigate the anti-inflammatory effect of RvE1 in asthma, a murine model of asthma was studied. After RvE1 was administered to mice intraperitoneally, there were decreases in: airway eosinophil and lymphocyte recruitment, specific Th2 cytokine, IL-13, ovalbumin-specific IgE, and airway hyperresponsiveness (AHR) to inhaled methacholine. Moreover, RvE1-treated mice had significantly lower mucus scores compared to vehicle-treated mice based on the number of goblet cells stained with periodic acid-schiff (PAS). These findings provide evidence that RvE1 is a pivotal counterregulatory signal in allergic inflammation and offer novel multi-pronged therapeutic approaches for human asthma.  相似文献   

18.
The development and treatment of asthma remains a subject of considerable interest in the medical community. Previous studies implicate an important role of cytokines in the pathology of asthma. In this current study, we examined whether redox-active protein thioredoxin 1 (TRX1) could prevent airway remodeling in an ovalbumin (OVA)-driven mouse chronic antigen exposure asthma model. Balb/c mice were sensitized and then challenged nine times with OVA (days 19-45). In this protocol, airway remodeling was established by day 34. Administration of recombinant human TRX1 during antigen challenge (days 18-32) significantly inhibited airway remodeling, eosinophilic pulmonary inflammation, airway hyperresponsiveness and resulted in decreased lung expression of eotaxin, macrophage inflammatory protein-1alpha and IL-13. Airway remodeling and eosinophilic pulmonary inflammation was also prevented in chronic OVA-exposed Balb/c human TRX1 transgenic mice. Importantly, TRX1-administration, after the establishment of airway remodeling (days 35-45), resulted in improved airway pathology. Our results suggest TRX1 prevents the development of airway remodeling, and also improves established airway remodeling by inhibiting production of chemokines and Th2 cytokines in the lungs.  相似文献   

19.
Thioredoxin (TRX) is a 12-kDa redox (reduction/oxidation)-active protein that has a highly conserved site (-Cys-Gly-Pro-Cys-) and scavenges reactive oxygen species. Here we examined whether exogenously administered TRX modulated airway hyperresponsiveness (AHR) and airway inflammation in a mouse asthma model. Increased AHR to inhaled acetylcholine and airway inflammation accompanied by eosinophilia were observed in OVA-sensitized mice. Administration of wild-type but not 32S/35S mutant TRX strongly suppressed AHR and airway inflammation, and upregulated expression of mRNA of several cytokines (e.g., IL-1alpha, IL-1beta, IL-1 receptor antagonist, and IL-18) in the lungs of OVA-sensitized mice. In contrast, TRX treatment at the time of OVA sensitization did not improve AHR or airway inflammation in OVA-sensitized mice. Thus, TRX inhibited the asthmatic response after sensitization, but did not prevent sensitization itself. TRX and redox-active protein may have clinical benefits in patients with asthma.  相似文献   

20.
We previously demonstrated that treatment of acute asthmatic rats with gene therapy using plasmid-encoding Galectin-3 (Gal-3) resulted in an improvement of cellular and functional respiratory parameters. The next question that we wanted to clarify was if in a chronic situation where the treated animal continues to inhale the Ag, does this procedure prevent the chronicity and the remodeling? Chronic inflammation was induced by intranasal administration of OVA over a period of 12 wk. In the treated group, the Gal-3 gene was introduced by intranasal instillation in 50 mul of plasmid-encoding Gal-3. Noninvasive airway responsiveness to methacholine was tested at different times. Cells were obtained by bronchoalveolar lavage and used for RNA extraction and cytometric studies. Eosinophils were counted in blood and bronchoalveolar lavage fluid. Real-time PCR was used to measure Gal-3 and cytokine mRNA expression in lung. Lungs were paraffined and histologic analyses were performed (H&E, periodic acid-Schiff, and Masson Trichrome stain). Our results showed that 12 wk after the first intranasal Ag instillation in chronically asthmatic mice, treatment with the Gal-3 gene led to an improvement in the eosinophil count and the normalization of hyperresponsiveness to methacholine. Concomitantly, this treatment resulted in an improvement in mucus secretion and subepithelial fibrosis in the chronically asthmatic mice, with a quantitatively measured reduction in lung collagen, a prominent feature of airway remodeling. Plasmid-encoding Gal-3 acts as a novel treatment for chronic asthma in mice producing nearly complete blockade of Ag responses with respect to eosinophil airway accumulation, airway hyperresponsiveness, and remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号