首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The aim of the present study was to examine whether or not the compliance of the gastrocnemius medialis (GM) tendon and aponeurosis is influenced by submaximal fatiguing efforts. Fourteen elderly male subjects performed isometric maximal voluntary plantarflexion contractions (MVC) on a dynamometer before and after two fatiguing protocols. The protocols consisted of: (1) submaximal concentric isokinetic contractions (70% isokinetic MVC) at 60 degrees /s and (2) a sustained isometric contraction (40% isometric MVC) until failure to hold the defined moment. Ultrasonography was used to determine the elongation and strain of the GM tendon and aponeurosis. To account for the axis misalignment between ankle and dynamometer, the kinematics of the leg were captured at 120 Hz. The maximum moment decreased from 85.9+/-17.9 Nm prior fatigue to 79.2+/-19 Nm after isokinetic fatigue and to 69.9+/-16.4 Nm after isometric fatigue. The maximal strain of the GM tendon and aponeurosis before fatigue, after isokinetic and after isometric fatigue were 4.9+/-1.1%, 4.4+/-1.1% and 4.3+/-1.1% respectively. Neither the strain nor the elongation showed significant differences before and after each fatiguing task at any 100 N step of the calculated tendon force. This implies that the compliance was not altered after either the isokinetic or the isometric fatiguing task. Therefore it was concluded that the strains during the performed submaximal fatiguing tasks, were too small to provoke any structural changes in tendon and aponeurosis.  相似文献   

2.
The purpose of this study was to quantify strain and elongation of the long head of the biceps femoris (BFlh) and the semitendinosus (ST) tendon/aponeurosis. Forty participants performed passive knee extension trials from 90° of knee flexion to full extension (0°) followed by ramp isometric contractions of the knee flexors at 0°, 45° and 90° of knee flexion. Two ultrasound probes were used to visualize the displacement of BFlh and ST tendon/aponeurosis. Three-way analysis of variance designs indicated that: (a) Tendon/aponeurosis (passive) elongation and strain were higher for the BFlh than the ST as the knee was passively extended (p < 0.05), (b) contraction at each angular position was accompanied by a smaller BFlh tendon/aponeurosis (active) strain and elongation than the ST at higher levels of effort (p < 0.05) and (c) combined (passive and active) strain was significantly higher for the BFlh than ST during ramp contraction at 0° but the opposite was observed for the 45° and 90° flexion angle tests (p < 0.05). Passive elongation of tendon/aponeurosis has an important effect on the tendon/aponeurosis behavior of the hamstrings and may contribute to a different loading of muscle fibers and tendinous tissue between BFlh and ST.  相似文献   

3.
The objective of the present study was to investigate the age-related effects of submaximal static and cyclic loading on the mechanical properties of the vastus lateralis (VL) tendon and aponeurosis in vivo. Fourteen old and 12 young male subjects performed maximal voluntary isometric knee extensions (MVC) on a dynamometer before and after (a) a sustained isometric contraction at 25% MVC and (b) isokinetic contractions at 50% isokinetic MVC, both until task failure. The elongation of the VL tendon and aponeurosis was examined using ultrasonography. To calculate the resultant knee joint moment, the kinematics of the leg were recorded with eight cameras (120 Hz). The old adults displayed significantly lower maximal moments but higher strain values at any given tendon force from 400 N and up in all tested conditions. Neither of the loading protocols influenced the strain-force relationship of the VL tendon and aponeurosis in either the old or young adults. Consequently, the capacity of the tendon and aponeurosis to resist force remained unaffected in both groups. It can be concluded that in vivo tendons are capable of resisting long-lasting static (~4.6 min) or cyclic (~18.5 min) mechanical loading at the attained strain levels (4-5%) without significantly altering their mechanical properties regardless of age. This implies that as the muscle becomes unable to generate the required force due to fatigue, the loading of the tendon is terminated prior to provoking any significant changes in tendon mechanical properties.  相似文献   

4.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

5.
6.
The purpose of the current study in combination with our previous published data (Arampatzis et al., 2007) was to examine the effects of a controlled modulation of strain magnitude and strain frequency applied to the Achilles tendon on the plasticity of tendon mechanical and morphological properties. Eleven male adults (23.9±2.2 yr) participated in the study. The participants exercised one leg at low magnitude tendon strain (2.97±0.47%), and the other leg at high tendon strain magnitude (4.72±1.08%) of similar frequency (0.5 Hz, 1 s loading, 1 s relaxation) and exercise volume (integral of the plantar flexion moment over time) for 14 weeks, 4 days per week, 5 sets per session. The exercise volume was similar to the intervention of our earlier study (0.17 Hz frequency; 3 s loading, 3 s relaxation) allowing a direct comparison of the results. Before and after the intervention ankle joint moment has been measured by a dynamometer, tendon–aponeurosis elongation by ultrasound and cross-sectional area of the Achilles tendon by magnet resonance images (MRI). We found a decrease in strain at a given tendon force, an increase in tendon–aponeurosis stiffness and tendon elastic modulus of the Achilles tendon only in the leg exercised at high strain magnitude. The cross-sectional area (CSA) of the Achilles tendon did not show any statistically significant (P>0.05) differences to the pre-exercise values in both legs. The results indicate a superior improvement in tendon properties (stiffness, elastic modulus and CSA) at the low frequency (0.17 Hz) compared to the high strain frequency (0.5 Hz) protocol. These findings provide evidence that the strain magnitude applied to the Achilles tendon should exceed the value, which occurs during habitual activities to trigger adaptational effects and that higher tendon strain duration per contraction leads to superior tendon adaptational responses.  相似文献   

7.
Females are less fatigable than males during isometric contractions across various muscles and intensities. However, sex differences in knee-extensor fatigability remain relatively unexplored. Purpose: To determine the sex difference in performance fatigability for intermittent, isometric contractions of the knee-extensor muscles. Methods: Eighteen participants (10 males, 8 females) performed intermittent, isometric, knee-extensor contractions at 30% of their maximal voluntary force (MVC) for 30 min and in a separate session at 50% MVC until task-failure. During both fatiguing protocols a MVC was performed every 60 s and electromyography (EMG) was recorded during all contractions. Results: At task completion males had a larger reduction in MVC force for the 30% MVC task (−32 ± 15% vs. −15 ± 16%, P = 0.042) and the 50% MVC task (−34 ± 8% vs. −24 ± 1%, P = 0.045). Furthermore, for the 50% MVC task, females had a longer task duration (937 ± 525 s vs. 397 ± 153 s, P = 0.007). The rise in EMG activity and force fluctuations were more rapid for the males than females (P < 0.05). When participants were matched for strength post hoc (n = 10), a sex difference in fatigability for both tasks was still evident. Conclusions: Females were less fatigable than males during intermittent, isometric, knee-extensor contractions at moderate relative forces and this difference was independent of strength.  相似文献   

8.
This study aimed to determine the characteristics of the in vivo behaviour of human muscle architecture during a pre-motion silent period (PMSP) using ultrasonography. Subjects were requested to perform rapid knee extension with vertical jumping. Electromyographic signals were recorded from the vastus lateralis (VL), vastus medialis, and biceps femoris muscles. Ultrasonic images were recorded from the VL. We found that the cross point between the fascicle and deep aponeurosis in the VL moved to the distal side before the rapid vertical jumps with PMSP. This cross point movement with PMSP was of low amplitude (mean: 1.0 ± 0.3 mm) and velocity (22.2 ± 6.1 mm/s). The amplitude and velocity of the cross point movement were significantly positively related to the angular peak velocity of knee extensor during rapid vertical jumping in trials with PMSP. These results suggest that although low levels of pre-movement muscle architectural change with PMSP may be the result of muscle relaxation behaviour rather than the result of muscle stretching behaviour, this pre-movement effect can influence subsequent muscular performance during a rapid voluntary movement. PMSP may allow pre-movement muscle architectural change to generate a better muscular condition to increase neural activation during the subsequent rapid voluntary contraction.  相似文献   

9.
The aim of this exploratory study was to verify whether the evaluation of quadriceps muscle weakness is influenced by the testing modality (isometric vs. isokinetic vs. isoinertial) and by the calculation method (within-subject vs. between-subject comparisons) in patients 4–8 months after total knee arthroplasty (TKA, n = 29) and total hip arthroplasty (THA, n = 30), and in healthy controls (n = 19). Maximal quadriceps strength was evaluated as (1) the maximal voluntary contraction (MVC) torque during an isometric contraction, (2) the peak torque during an isokinetic contraction, and (3) the one repetition maximum (1-RM) load during an isoinertial contraction. Muscle weakness was calculated as the difference between the involved and the uninvolved side (within-subject comparison) and as the difference between the involved side of patients and controls (between-subject comparison). Muscle weakness estimates were not significantly affected by the calculation method (within-subject vs. between-subject; P > 0.05), whereas a significant main effect of testing modality (P < 0.05) was observed. Isometric MVC torque provided smaller weakness estimates than isokinetic peak torque (P = 0.06) and isoinertial 1-RM load (P = 0.008), and the clinical occurrence of weakness (proportion of patients with large strength deficits) was also lower for MVC torque. These results have important implications for the evaluation of quadriceps muscle weakness in TKA and THA patients 4–8 months after surgery.  相似文献   

10.
The purpose of the study was to investigate the effects of two fatigue protocols on landing performance. A repeated measures design was used to examine the effects of fatigue and fatigue protocol on neuromuscular and biomechanical performance variables. Ten volunteers performed non-fatigued and fatigued landings on two days using different fatigue protocols. Repeated maximum isometric squats were used to induce fatigue on day one. Sub-maximum cycling was used to induce fatigue on day two. Isometric squat maximum voluntary contraction (MVC) was measured before and after fatigued landings on each day. During the landings, ground reaction force (GRF), knee kinematics, and electromyographic (EMG) data were recorded. Isometric MVC, GRF peaks, loading rates, impulse, knee flexion at contact, range of motion, max angular velocity, and EMG root mean square (RMS) values were compared pre- and post-fatiguing exercise and between fatigue protocols using repeated ANOVA. Fatigue decreased MVC strength (p ? 0.05), GRF second peak, and initial impulse (p ? 0.01), but increased quadriceps medium latency stretch reflex EMG activity (p ? 0.012). Knee flexion at contact was 5.2° greater (p ? 0.05) during fatigued landings following the squat exercise compared to cycling. Several variables exhibited non-significant but large effect sizes when comparing the effects of fatigue and fatigue protocol. In conclusion, fatigue alters landing performance and different fatigue protocols result in different performance changes.  相似文献   

11.
This study aimed to analyze the effects of the contraction mode (isotonic vs. isokinetic concentric conditions), the joint angle and the investigated muscle on agonist muscle activity and antagonist muscle co-activity during standardized knee extensions. Twelve healthy adult subjects performed three sets of isotonic knee extensions at 40% of their maximal voluntary isometric torque followed by three sets of maximal isokinetic knee extensions on an isokinetic dynamometer. For each set, the mean angular velocity and the total external amount of work performed were standardized during the two contraction modes. Surface electromyographic activity of vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), semitendinosus (ST) and biceps femoris (BF) muscles was recorded. Root mean square values were then calculated for each 10° between 85° and 45° of knee extension (0° = horizontal position). Results show that agonist muscle activity and antagonist muscle co-activity levels are significantly greater in isotonic mode compared to isokinetic mode. Quadriceps activity and hamstrings co-activity are significantly lower at knee extended position in both contraction modes. Considering agonist muscles, VL reveals a specific pattern of activity compared to VM and RF; whereas considering hamstring muscles, BF shows a significantly higher co-activity than ST in both contraction modes. Results of this study confirmed our hypothesis that higher quadriceps activity is required during isotonic movements compared to isokinetic movements leading to a higher hamstrings co-activity.  相似文献   

12.
This study evaluates and compares the effects of strength and endurance training on motor unit discharge rate variability and force steadiness of knee extensor muscles. Thirty sedentary healthy men (age, 26.0 ± 3.8 yrs) were randomly assigned to strength training, endurance training or a control group. Conventional endurance and strength training was performed 3 days per week, over a period of 6 weeks. Maximum voluntary contraction (MVC), time to task failure (at 30% MVC), coefficient of variation (CoV) of force and of the discharges rates of motor units from the vastus medialis obliquus and vastus lateralis were determined as subjects performed 20% and 30% MVC knee extension contractions before and after training. CoV of motor unit discharges rates was significantly reduced for both muscles following strength training (P < 0.001), but did not change in the endurance (P = 0.875) or control group (P = 0.995). CoV of force was reduced after the strength training intervention only (P < 0.01). Strength training, but not endurance training, reduces motor unit discharge rate variability and enhances force steadiness of the knee extensors. These results provide new insights into the neuromuscular adaptations that occur with different training methods.  相似文献   

13.
14.
The effect of posterior cruciate ligament (PCL) on muscle co-activation (MCO) is not known though MCO has been extensively studied. The purpose of the study was to investigate the effect of PCL creep on MCO and on joint moment around the knee. Twelve males and twelve females volunteered for this study. PCL creep was estimated via tibial posterior displacement which was elicited by a 20 kg dumbbell hanged on horizontal shank near patella for 10 min. Electromyography activity from both rectus femoris and biceps femoris as well as muscle strength on the right thigh was recorded synchronically during knee isokinetic flexion–extension performance in speed of 60 deg/s as well as 120 deg/s on a dynamometer before and after PCL creep. A one-way ANOVA with repeated measures was used to evaluate the effect of creep, gender and speed. The results showed that significant tibial posterior displacement was found (p = 0.01) in both male and female groups. No significant increase of joint moment was found in flexion as well as in extension phase in both female and male groups. There was a significant effect of speed (p = 0.036) on joint moment in extension phase. Co-activation index (CI) decreased significantly (p = 0.049) in extension phase with a significant effect of gender (p  0.001). It was concluded that creep developed in PCL due to static posterior load on the proximal tibia could significantly elicit the increase of the activation of agonist muscles but with no compensation from the antagonist in flexion as well as in extension phase. The creep significantly elicited the decrease of the antagonist–agonist CI in extension phase. MCO in females was reduced significantly in extension phase. It was suggested that PCL creep might be one of risk factors to the knee injury in sports activity.  相似文献   

15.
This study aimed to examine within-day and between-days intratester reliability of mechanomyography (MMG) in assessing muscle fatigue. An accelerometer was used to detect the MMG signal from rectus femoris. Thirty one healthy subjects (15 males) with no prior knee problems initially performed three maximum voluntary contractions (MVCs) using an ISOCOM dynamometer. After 10 min rest, subjects performed a fatiguing protocol in which they performed three isometric knee extensions at 75% MVC for 40 s. The fatiguing protocol was repeated on two other days, two to four days apart for between-days reliability. MMG activity was determined by overall root mean squared amplitude (RMS), mean power frequency (MPF) and median frequency (MF) during a 40 s contraction. RMS, MPF and MF linear regression slopes were also analysed. Intraclass Correlation Coefficients (ICC); ICC1,1 and ICC1,2 were used to assess within-day reliability and between-days reliability respectively. Standard error of measurement (SEM) and smallest detectable difference (SDD) described the within-subjects variability. MMG fatigue measures using linear regression slopes showed low reliability and large between-days error (ICC1,2 = 0.43–0.46; SDD = 306.0–324.8% for MPF and MF slopes respectively). Overall MPF and MF, on the other hand, were reliable with high ICCs and lower SDDs compared to linear slopes (ICC1,2 = 0.79–0.83; SDD = 21.9–22.8% for MPF and MF respectively). ICC1,2 for overall MMG RMS and linear RMS slopes were 0.81 and 0.66 respectively; however, the SDDs were high (56.4% and 268.8% respectively). The poor between-days reliability found in this study suggests caution in using MMG RMS, MPF and MF and their corresponding slopes in assessing muscle fatigue.  相似文献   

16.
The purpose of this study was to investigate neuromuscular activation of the vastus intermedius (VI) muscle during fatiguing contraction. Seven healthy men performed sustained isometric knee extension exercise at 50% of maximal voluntary contraction until exhaustion. During the fatiguing task, surface electromyograms (EMGs) were recorded from four muscle components of the quadriceps femoris muscle group: VI; vastus lateralis (VL); vastus medialis (VM); and rectus femoris (RF) muscles. For the VI muscle, our recently developed technique was used. Root mean square (RMS) and median frequency (MF) of the surface EMG signal were calculated and these variables were then normalized by the value at the beginning of the task. Normalized RMS of the VI muscle resembled those of the other three muscles at all given times. At 95% of exhaustion time, normalized MF of the VI muscle was significantly higher than that of the VL muscle (p < 0.05). These results suggested that neuromuscular activation is not consistent between the VI and VL muscles at the exhaustion for isometric submaximal contraction and this could reflect the dissimilar intramuscular metabolism between these muscles.  相似文献   

17.
Torque steadiness and low-frequency fatigue (LFF) were examined in the human triceps brachii after concentric or eccentric fatigue protocols. Healthy young males (n = 17) performed either concentric or eccentric elbow extensor contractions until the eccentric maximal voluntary torque decreased to 75% of pre-fatigue for both (concentric and eccentric) protocols. The number of concentric contractions was greater than the number of eccentric contractions needed to induce the same 25% decrease in eccentric MVC torque (52.2 ± 2.9 vs. 41.5 ± 2.1 for the concentric and eccentric protocols, respectively, p < .01). The extent of peripheral fatigue was ~12% greater after the concentric compared to the eccentric protocol (twitch amplitude), whereas LFF (increase in double pulse torque/single pulse torque), was similar across protocols. Steadiness, or the ability for a subject to hold a submaximal isometric contraction, was ~20 % more impaired during the Ecc protocol (p = .052). Similarly, the EMG activity required to hold the torque steady was nearly 20% greater after the eccentric compared to concentric protocol. These findings support that task dependent eccentric contractions preferentially alter CNS control during a precision based steadiness task.  相似文献   

18.
Studies have demonstrated that the electromyographic (EMG) amplitude versus submaximal isometric force relationship is relatively linear. The purpose of this investigation was to determine the minimum number of contractions required to study this relationship. Eighteen men (mean age = 23 years) performed isometric contractions of the leg extensors at 10–90% of the maximum voluntary contraction (MVC) in 10% increments while surface EMG signals were detected from the vastus lateralis and vastus medialis. Linear regression was used to determine the coefficient of determination, slope coefficient, and y-intercept for each muscle and force combination with successively higher levels included in the model (i.e., 10–30%,  10–90% MVC). For the slope coefficients, there was a main effect for force combination (P < .001). The pairwise comparisons showed there was no difference from 10–60% through 10–90% MVC. For the y-intercepts, there were main effects for both muscle (vastus lateralis [4.3 μV RMS] > vastus medialis [−3.7 μV RMS]; P = .034) and force combination (P < .001), with similar values shown from 10–50% through 10–90% MVC. The linearity of the absolute EMG amplitude versus isometric force relationship for the vastus lateralis and vastus medialis suggests that investigators may exclude high force contractions from their testing protocol.  相似文献   

19.
The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6 ± SD 1.2 years old) and 17 older (61.7 ± 5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip = 26.3 ± 13.5%, knee = 78.4 ± 32.2%, ankle = 27.9 ± 14.1%) compared to methods which do not account for these variations (hip = 23.5 ± 11.7%, knee = 51.7 ± 15.0%, ankle = 20.7 ± 10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.  相似文献   

20.
It is not currently known how the mechanical properties of human tendons change with maturation in the two sexes. To address this, the stiffness and Young's modulus of the patellar tendon were measured in men, women, boys and girls (each group, n=10). Patellar tendon force (Fpt) was calculated from the measured joint moment during a ramped voluntary isometric knee extension contraction, the antagonist knee extensor muscle co-activation quantified from its electromyographical activity, and the patellar tendon moment arm measured from magnetic resonance images. Tendon elongation was imaged using the sagittal-plane ultrasound scans throughout the contraction. Tendon cross-sectional area was measured at rest from ultrasound scans in the transverse plane. Maximal Fpt and tendon elongation were (mean±SE) 5453±307 N and 5±0.5 mm for men, 3877±307 N and 4.9±0.6 mm for women, 2017±170 N and 6.2±0.5 mm for boys and 2169±182 N and 5.9±0.7 mm for girls. In all groups, tendon stiffness and Young's modulus were examined at the level that corresponded to the maximal 30% of the weakest participant's Fpt and stress, respectively; these were 925–1321 N and 11.5–16.5 MPa, respectively. Stiffness was 94% greater in men than boys and 84% greater in women than girls (p<0.01), with no differences between men and women, or boys and girls (men 1076±87 N/mm; women 1030±139 N/mm; boys 555±71 N/mm and girls 561.5±57.4 N/mm). Young's modulus was 99% greater in men than boys (p<0.01), and 66% greater in women than girls (p<0.05). There were no differences in modulus between men and women, or boys and girls (men 597±49 MPa; women 549±70 MPa; boys 255±42 MPa and girls 302±33 MPa). These findings indicate that the mechanical stiffness of tendon increases with maturation due to an increased Young's modulus and, in females due to a greater increase in tendon cross-sectional area than tendon length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号