首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Architecturalproperties of the triceps surae muscles were determined in vivo for sixmen. The ankle was positioned at 15° dorsiflexion (15°)and 0, 15, and 30° plantar flexion, with the knee set at 0, 45, and90°. At each position, longitudinal ultrasonic images of the medial(MG) and lateral (LG) gastrocnemius and soleus (Sol) muscles wereobtained while the subject was relaxed (passive) and performed maximalisometric plantar flexion (active), from which fascicle lengths andangles with respect to the aponeuroses were determined. In the passivecondition, fascicle lengths changed from 59, 65, and 43 mm (knee,0°; ankle, 15°) to 32, 41, and 30 mm (knee, 90°ankle, 30°) for MG, LG, and Sol, respectively. Fascicle shorteningby contraction was more pronounced at longer fascicle lengths. MG hadgreatest fascicle angles, ranging from 22 to 67°, and was in a verydisadvantageous condition when the knee was flexed at 90°,irrespective of ankle positions. Different lengths and angles offascicles, and their changes by contraction, might be related todifferences in force-producing capabilities of the muscles and elasticcharacteristics of tendons and aponeuroses.

  相似文献   

2.
The rigid linked system model and principles of inverse dynamics have been widely used to calculate residual muscle moments during various activities. EMG driven models and optimization algorithms have also been presented in the literature in efforts to estimate skeletal muscle forces and evaluate their possible contribution to the residual muscle moment. Additionally, skeletal muscle-tendon forces have been measured, directly, in both animals and humans. The purpose of this investigation was to calculate the moment produced by the triceps surae muscles and compare it to the residual muscle moment at the ankle during cycling at three power outputs (90, 180 and 270 W). Inferences were made regarding the potential contribution made by each triceps surae component to the tendon force using EMG and muscle-tendon length changes. A buckle-type transducer was surgically implanted on the right Achilles tendon of one male subject. Achilles tendon forces measured in vivo were multiplied by their corresponding moment arms to yield the triceps surae moment during the three working conditions. Moment arm lengths were obtained in a separate experiment using magnetic resonance imaging (MRI). Pedal reaction forces, body segment accelerations (determined from high speed film), and appropriate mass parameters served as input to the inverse solution. The triceps surae moment was temporally in phase with and consistently represented approximately 65% of the residual muscle moment at the ankle. These data demonstrate the feasibility of using implanted transducers in human subjects and provide a greater understanding of musculoskeletal mechanics during normal human movements.  相似文献   

3.
Nine healthy men (22-45 yr) completed 100 repetitive maximal isometric contractions of the ankle plantar flexor muscles in two knee positions of full extension (K0) and flexion at 90 degrees (K90), positions that varied the contribution of the gastrocnemii. Electromyographic activity was recorded from the medial and lateral gastrocnemii and soleus muscles by using surface electrodes. Plantar flexion torque in K0 was greater and decreased more rapidly than in K90. The electromyographic amplitude decreased over time, and there were no significant differences between muscles and knee joint positions. The level of voluntary effort, assessed by a supramaximal electrical stimulation during every 10th contraction, decreased from 96 to 70% (P < 0.05) with no difference between K0 and K90. It was suggested that a decrease in plantar flexion torque was attributable to both central and peripheral fatigue and that greater fatigability in K0 than in K90 would result from a greater contribution and hence more pronounced fatigue of the gastrocnemius muscle. Further support for this possibility was provided from changes in twitch torque.  相似文献   

4.
The muscles of the triceps surae group are important for performance in most sports and in the performance of activities of daily life. In addition, hypertrophy and balance among these muscles are integral to success in bodybuilding. The purpose of this study was to compare the muscle utilization patterns of the 2 major muscles of the triceps surae group, the soleus (SOL) and gastrocnemius (lateral head = LG and medial head = MG), and the tibialis anterior (TA) as an antagonist muscle to the group. Their electromyographic (EMG) signals were compared during 50 constant external resistance contractions at a level established before the testing session. Eleven experienced subjects contributed data during plantar flexion at 3 different knee angles (90, 135, and 180 degrees ). Both root mean square amplitude and integrated signal analyses of the EMGs revealed that the MG produced significantly greater activity than either the SOL or TA at 180 degrees, whereas the LG was not different from the SOL at any knee angle measured. Data also revealed that the SOL produced less electrical activity at 180 degrees than at the other knee angles, whereas the MG produced greater electrical activity. As would be expected, the TA produced lower EMG values than any of the triceps surae muscles at all angles tested. These data indicate that selective targeting of the SOL and MG is possible through the manipulation of knee angle. This targeting appears to be controlled by the biarticular and monoarticular structures of the MG and SOL, respectively. The LG appears less affected by knee position than the MG. Results suggest that the SOL can be targeted most effectively with the knee flexed at 90 degrees and the MG with the leg fully extended. The LG appears to also be more active at 180 degrees; however, it is not as affected as the MG or SOL by knee angle.  相似文献   

5.
Previous research has shown that changes in spinal excitability occur during the postural sway of quiet standing. In the present study, it was of interest to examine the independent effects of sway position and sway direction on the efficacy of the triceps surae Ia pathway, as reflected by the Hoffman (H)-reflex amplitude, during standing. Eighteen participants, tested under two different experimental protocols, stood quietly on a force platform. Percutaneous electrical stimulation was applied to the posterior tibial nerve when the position and direction of anteroposterior (A-P) center of pressure (COP) signal satisfied the criteria for the various experimental conditions. It was found that, regardless of sway position, a larger amplitude of the triceps surae H-reflex (difference of 9-14%; P = 0.005) occurred when subjects were swaying in the forward compared with the backward direction. The effects of sway position, independent of the sway direction, on spinal excitability exhibited a trend (P = 0.075), with an 8.9 +/- 3.7% increase in the H-reflex amplitude occurring when subjects were in a more forward position. The observed changes to the efficacy of the Ia pathway cannot be attributed to changes in stimulus intensity, as indicated by a constant M-wave amplitude, or to the small changes in the level of background electromyographic activity. One explanation for the changes in reflex excitability with respect to the postural sway of standing is that the neural modulation may be related to the small lengthening and shortening contractions occurring in the muscles of the triceps surae.  相似文献   

6.
7.
The relative contribution of synergistic muscles has been studied during pedalling on a bicycle. The electromyographic (EMG) activity of the different components of triceps surae (namely soleus or SOL and medial gastrocnemius or MG) has been recorded and analyzed for increasing pedalling speed performed against increasing resistance. The results indicate that SOL IEMG (integrated EMG) increases linearly (y = 2x-12.1; r = 0.98) with increasing load (10-70 N) at constant speed (60 rpm), whereas no change is noted in MG IEMG below 40 N. In contrast, when the pedalling speed is increased (from 30 to 170 rpm) at constant load, MG IEMG shows the largest increase. Furthermore, although in both muscles EMG activity appears earlier in the movement with increases in load and/or speed, the delay between the onset of both EMGs remains unchanged at constant speed and synchronization of MG with SOL is only observed when speed is increased above 140 rpm. These results suggest that the different muscles of the triceps surae make specific contributions to the development of the mechanical tension required to maintain or increase the speed of movement.  相似文献   

8.
Synergistic behaviour of triceps surae muscles (medial gastrocnemius-MG, lateral gastrocnemius-LG, soleus-SOL) during sustained submaximal plantarflexions was investigated in this study. Six male subjects were asked to sustain an isometric plantar flexor effort to exhaustion at two different knee angles. Exhaustion was defined as the point when they could no longer maintain the required tension. The loads sustained at 0 and 120 degrees of knee flexion represented 50% and 36% of their maximum voluntary contraction (MVC) respectively. MVC was measured at 0 degree knee flexion. During the contractions, electromyograms (EMG) from the surface of the triceps surae muscles were recorded. Changes in the synergistic behaviour of the triceps surae were assessed via partial correlations of the average EMG (AEMG) between three muscle combinations; MG/LG, MG/SOL, LG/SOL, and correlation between SOL/MG + LG and MG/SOL + LG. The latter combinations were based on either common fibre type or innervation properties. Two types of synergisms were identified: trade-off and coactivation. Trade-off and coactivation synergies were defined by significant (p less than 0.05) positive and negative correlations respectively. Coactivation synergism was found to occur predominantly under conditions of high load or reduced length of the triceps surae, and increased with the duration of the contraction. Trade-off synergism was evident when the muscles were at their optimum length and the loads sustained were submaximum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Work requiring extremely body flexion is strongly associated with a high incidence of musculoskeletal injuries often reported during adopting squatting. In this study, the influence of different lower seat heights on the muscular stress in squatting on a stool (SS) were examined in comparison with fully squatting (FS). Fourteen healthy Indonesian males were recruited in the experiment. Two-dimensional body kinematics, ground reaction force (GRF) and electromyography (EMG) data were collected as subjects performed forward movement under four squatting height conditions which were FS and SS at 10 cm, 15 cm and 20 cm seat height. The results demonstrated that the change from FS to SS primarily affected the segmental angular flexions and muscular activities in the upper and lower limbs. GRF data showed that the SS conditions delivered 24% body weight onto the seat. The change of FS to SS showed significantly decrease in muscular load of the rectus femoris and tibialis anterior. In contrast, the soleus and gastrocnemius increased the activities as the seat height increased. The type of task that required the hand to handle the object on the ground level affected the trunk to be more flexed as the seat height increased. The findings of this study suggest that the use of a lower seat stool of a proper height seems to be a sub-optimal solution considering the change of muscular load associated with the discomfort in a squatting posture.  相似文献   

11.
Electromechanical delay (EMD) is the time delay between the onset of muscle activity and the onset of force/joint torque. This delay appears to be linked to muscular contraction efficiency. However, to our knowledge, limited evidence is available regarding the magnitude of the EMD in stroke-impaired muscles. Accordingly, this study aims to quantify the EMD in both paretic and non-paretic triceps surae muscles of chronic hemispheric stroke survivors, and to investigate whether the EMD is related to voluntary force-generating capacity in this muscle group. Nine male chronic stroke survivors were asked to perform isometric plantarflexion contractions at different force levels and at different ankle joint angles ranging from maximum plantarflexion to maximum dorsiflexion. The surface electromyograms were recorded from triceps surae muscles. The longest EMD among triceps surae muscles was chosen as the EMD for each side. Our results revealed that the EMD in paretic muscles was significantly longer than in non-paretic muscles. Moreover, both paretic and non-paretic muscles showed a negative correlation between the EMD and maximum torque-generating capacity. In addition, there was a strong positive relationship between the EMD and shear wave speed in paretic muscles as well as a negative relationship between the EMD and passive ankle joint range of motion. These findings imply that the EMD may be a useful biomarker, in part, associated with contractile and material properties in stroke-impaired muscles.  相似文献   

12.
We previously demonstrated that muscle afferent endings are sensitized by exogenous prostaglandins during static contraction of skeletal muscle. The purpose of this study was to determine whether 30 s of static hindlimb contraction, induced by electrical stimulation of the cat sciatic nerve, increases the concentration of immunoreactive prostaglandin E2 (iPGE2) and 6-ketoprostaglandin F1 alpha (i6-keto-PGF1 alpha, the stable metabolite of prostaglandin I2) in muscle tissue. In addition, the role of ischemia in augmenting prostanoid production was examined. Gastrocnemius muscle was obtained by freeze-clamping tissue, and prostaglandins were extracted from muscle homogenates and measured by radioimmunoassay. Compared with precontraction values, high-intensity (68% of maximal tension) static contraction elevated gastrocnemius iPGE2 and i6-keto-PGF1 alpha by 45 and 53%, respectively (P less than 0.01). Likewise, when blood flow to the gastrocnemius was attenuated by arterial occlusion during and 2 min before low-intensity contraction (29% maximal tension), the intramuscular iPGE2 concentration was increased by 71% (P less than 0.01). Conversely, low-intensity contraction (30% of maximal tension) and arterial occlusion without contraction did not alter the concentration of either prostanoid. Our findings demonstrate that prostaglandins accumulate in muscle during static contraction. We believe that local muscle ischemia may provide a stimulus for this phenomenon. These prostaglandins therefore are available to sensitize afferent endings responsible for reflex adjustments during static muscle contraction.  相似文献   

13.
The objective of this study was to examine the effect of joint angle on the electromyogram (EMG) and mechanomyogram (MMG) during maximal voluntary contraction (MVC). Eight subjects performed maximal isometric plantar flexor torque productions at varying knee and/or ankle angles. Maximal voluntary torque, EMG, and MMG from the soleus (Sol), medial (MG) and lateral gastrocnemius (LG) muscles were measured at different joint angles. At varying knee angles, the root mean squared (rms) MMG amplitude of the MG and LG increased with knee joint extension from 60 degrees to 180 degrees (full extension) in steps of 30 degrees, whereas that of the Sol was constant. At varying ankle angles, the rms-MMG of all muscles (Sol, MG, and LG) decreased with torque as ankle joint extending from 80 degrees (10 degrees dorsiflexion position) to 120 degrees (30 degrees plantar flexion position) in steps of 10 degrees. In each case, changes in the rms-MMG of the three muscles were almost parallel to those in torque. In contrast, there were no significant differences in the rms-EMG of all muscles among all joint angles. Our data suggest that the MMG amplitudes recorded from individual muscles during MVCs can represent relative torque-angle relationships that cannot be represented by the EMG signals.  相似文献   

14.
The activation capacities and neuromuscular efficiency (NME) of the triceps surae (TS) of prepubescent children (7–11 years) and adults were evaluated during submaximal and maximal (MVC) isometric plantarflexion to determine whether they varied with age. TS-EMG were obtained by summing-up the rectified electromyograms of the soleus and gastrocnemii muscles; these data were quantified using a sliding average method and normalized with reference to the TS maximal compound action potential (TS-M-wave).

The maximal EMG increased significantly with age in the children, but less than MVC, what led to a significant increase in NMEMax (MVC/TS-EMGmax ratio). The EMG–torque relationship indicated an age-related overactivation of TS at low torque, what led to a lower NMESub-max (inverse of the slope of the EMG–torque relationship) for the youngest children. The overactivation of TS was accompanied by contraction of the TA, which decreased with age. The youngest children were also less able to maintain a target torque and muscle activation. Finally, the twitch interpolated method revealed an age-dependant activation deficit. We conclude that central mechanisms are the main cause of the lower torques developed by children and they appear to vary with age in prepubertal children.  相似文献   


15.
The aim of the present study was to determine the effect of varying the height of the foot stretcher on the mechanical effectiveness of rowing. Ten male university level rowers rowed maximally for 3 minutes 30 seconds on a modified Concept 2 rowing ergometer. Each participant completed one trial at three foot stretcher heights. Position 1 was the original Concept 2 stretcher position, with Position 2 being located 5 cm and Position 3 being 10 cm above the original position and in the same orientation. Pull force and velocity were measured, and mean power generated by the rowers was calculated for each stroke. It was shown that in all three stretcher positions, mean power per stroke decreased as a function of time during the trial, confirming the fatiguing effects of the task. Although mean power per stroke did not differ significantly between stretcher positions at the start of the trial, p = 0.082, a significant difference was observed between the original stretcher position and Positions 2 and 3 at the end of the trial, p < 0.05. The lowest decline in mean power occurred in the highest stretcher position. It is suggested that this improvement in effectiveness is due to a reduction in the active downward vertical forces applied to the foot stretchers which does not contribute to forward propulsion, and thus a reduction in energy waste during each stroke. It was hypothesized that further raising the stretchers will continue to lead to an improvement in effectiveness until the optimum stretcher height is reached, above which effectiveness will be reduced.  相似文献   

16.
The degree of minced rat muscle regeneration in the absence of nerve fibers was compared with that of normal regenerates between one and 270 days postoperatively. Up to around 30 days, the number of muscle fibers and their morphology were comparable in both normal innervated and denervated regenerates; both showed clear cross striations and peripherally located nuclei. Histochemically, SDH and myofibrillar ATPase (pH=9.4) reactions were positive, but there were no typical signs of fiber types in either case of regeneration. The only consistent difference in the early period was the smaller fiber cross sectional areas in denervated regenerates than in innervated ones. Starting about 40 days, the muscle fibers in innervated regenerates became differentiated into different fiber types (fast-twitch-oxidative-glycolytic, FOG., fast-twitch-glycolytic, FG., slow-twitch-oxidative, SO.) but there were no such activities in denervated regenerates, although their SDH and myofibrillar ATPase reactions remained positive for a long time. Degenerating muscle fibers could no longer be identified in innervated regenerates. In the denervated regenerates, however, muscle fibers underwent atrophic or degenerative changes and were replaced by connective tissue. The complete disappearance of muscle fibers varied with individual regenerates. In some cases, it occurred about 90 days and in others, traces of muscle fibers could still be seen as late as 150 days postoperatively. Thus, nerves seem to be important primarily in the late phase of regeneration; namely, differentiation of fiber types and maintenance of the structural integrity of muscle fibers.  相似文献   

17.
ABSTRACT: Hébert-Losier, K, Schneiders, AG, García, JA, Sullivan, SJ, and Simoneau, GG. Influence of knee flexion angle and age on triceps surae muscle fatigue during heel raises. J Strength Cond Res 26(11): 3134-3147, 2012-The triceps surae (TS) muscle-tendon unit is 1 of the most commonly injured in elite and recreational athletes, with a high prevalence in middle-aged adults. The performance of maximal numbers of unilateral heel raises is used to assess, train, and rehabilitate TS endurance and conventionally prescribed in 0° knee flexion (KF) for the gastrocnemius and 45° for the soleus (SOL). However, the extent of muscle selectivity conferred through the change in the knee angle is lacking for heel raises performed to volitional fatigue. This study investigated the influence of knee angle on TS muscle fatigue during heel raises and determined whether fatigue differed between middle-aged and younger-aged adults. Forty-eight healthy individuals aged 18-25 and 35-45 years performed maximal numbers of unilateral heel raises in 0° and 45° KF. Median frequencies and linear regression slopes were calculated from the SOL, gastrocnemius medialis (GM), and gastrocnemius lateralis (GL) surface electromyographic signals. Stepwise mixed-effect regressions were used for analysis. The subjects completed an average of 45 and 48 heel raises in 0° and 45° KF, respectively. The results indicated that the 3 muscles fatigued during testing as all median frequencies decreased, and regression slopes were negative. Consistent with muscle physiology and fiber typing, fatigue was greater in the GM and GL than in the SOL (p < 0.001). However, knee angle did not influence TS muscle fatigue parameters (p = 0.814), with similar SOL, GM, and GL fatigue in 0° and 45° KF. These findings are in contrast with the traditionally described clinical use of heel raises in select knee angles for the gastrocnemius and the SOL. Furthermore, no difference in TS fatigue between the 2 age groups was able to be determined, despite the reported higher prevalence of injury in middle-aged individuals.  相似文献   

18.
ABSTRACT: Hébert-Losier, K, Schneiders, AG, García, JA, Sullivan, SJ, and Simoneau, GG. Influence of knee flexion angle and age on triceps surae muscle activity during heel raises. J Strength Cond Res 26(11): 3124-3133, 2012-Triceps surae and Achilles tendon injuries are frequent in sports medicine, particularly in middle-aged adults. Muscle imbalances and weakness are suggested to be involved in the etiology of these conditions, with heel-raise testing often used to assess and treat triceps surae (TS) injuries. Although heel raises are recommended with the knee straight for gastrocnemius and bent for soleus (SOL), the extent of muscle selectivity in these positions is not clear. This study aimed to determine the influence of knee angle and age on TS muscle activity during heel raises. Forty-eight healthy men and women were recruited from a younger-aged (18-25 years) and middle-aged (35-45 years) population. All the subjects performed unilateral heel raises in 0° and 45° knee flexion (KF). Soleus, gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) surface electromyography signals were processed to compute root-mean-square amplitudes, and data were analyzed using mixed-effects models and stepwise regression. The mean TS activity during heel raises was 23% of maximum voluntary isometric contraction when performed in 0° KF and 21% when in 45°. Amplitudes were significantly different between TS muscles (p < 0.001) and KF angles (p < 0.001), with a significant interaction (p < 0.001). However, the age of the population did not influence the results (p = 0.193). The findings demonstrate that SOL activity was 4% greater when tested in 45° compared with 0° KF and 5% lower in the GM and GL. The results are consistent with the recommended use of heel raises in select knee positions for assessing, training, and rehabilitating the SOL and gastrocnemius muscles; however, the 4-5% documented change in activity might not be enough to significantly influence clinical outcome measures or muscle-specific benefits. Contrary to expectations, TS activity did not distinguish between middle-aged and younger-aged adults, despite the higher injury prevalence in middle age.  相似文献   

19.
 The properties of membrane potential changes of skeletomotor neurons (S, FR, and FF) innervating triceps surae muscles during pseudorandom stretching of these muscles were studied in decerebrate cats. Peak amplitudes of pseudorandom muscle stretches ranged from 119 μm to 4.15 mm peak-to-peak. Sequences of ten identical stretching periods were applied for averaging. Shapes of membrane potential changes and probability density distribution of amplitudes of the input and output signals and power spectra suggest that the skeletomotor neuron membrane has nonlinear properties. First- and second-order Wiener kernels were determined by applying the cross-correlation (Lee-Schetzen) method. The results suggest that the transfer function between muscle stretches and subthreshold membrane potentials is a Wiener-type cascade. This cascade is consistent with a linear, second-order, underdamped transfer function followed by a simple quadratic nonlinearity [linear (L) system followed by nonlinear (N) system, or LN cascade]. Including the nonlinear component calculated from the second-order Wiener kernel improved the model significantly over its linear counterpart, especially in S-type motoneurons. Qualitatively similar results were obtained with all types of motoneurons studied. Received: 1 April 1993/Accepted in revised form: 24 March 1994  相似文献   

20.
We investigated whether selective muscle mechanoreceptor activation in the lower limb opposes arm muscle metaboreceptor activation-mediated limb vasoconstriction. Seven subjects completed two trials: one control trial and one stretch trial. Both trials included 2 min of handgrip and 2 min of posthandgrip exercise muscle ischemia (PEMI). In the stretch trial, a 2-min sustained triceps surae stretch, by brief passive dorsiflexion of the right foot, was performed simultaneously during PEMI. Mean arterial pressure, heart rate, and forearm blood flow (FBF) in the nonexercised arm and forearm vascular conductance (FVC) in the nonexercised arm were measured. During PEMI in the control trial, mean arterial pressure was significantly greater and FBF and FVC were significantly lower than baseline values (P < 0.05 for each). In contrast, FBF and FVC during PEMI in the stretch trial exhibited different responses than in the control trial. FBF and FVC were significantly greater in the stretch trial than in the control trial (FBF, 5.5 +/- 0.4 vs. 3.8 +/- 0.4 ml x 100 ml(-1) x min(-1); FVC, 0.048 +/- 0.004 vs. 0.033 +/- 0.003 unit, respectively; P < 0.05). These results indicate that passive triceps surae stretch can inhibit vasoconstriction in the nonexercised forearm mediated via muscle metaboreceptor activation in the exercised arm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号