首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present work is to develop nanoemulsions (NEs), nanosized emulsions, manufactured for improving the delivery of active pharmaceutical ingredients. In particular, nanoemulsions composed of Neem seed oil, contain rich bioactive components, and Tween 20 as nonionic surfactant were prepared. A mean droplet size ranging from 10 to 100?nm was obtained by modulating the oil/surfactant ratio. Physicochemical characterisation was carried out evaluating size, ζ-potential, microviscosity, polarity and turbidity of the external shell and morphology, along with stability in simulated cerebrospinal fluid (CSF), activity of Neem oil alone and in NEs, HEp-2 cell interaction and cytotoxicity studies. This study confirms the formation of NEs by Tween 20 and Neem oil at different weight ratios with small and homogenous dimensions. The antioxidant activity of Neem oil alone and in NEs was comparable, whereas its cytotoxicity was strongly reduced when loaded in NEs after interaction with HEp-2 cells.  相似文献   

2.

In this study, the effects of different dispersed phase volume fractions (Φ 0.025 and 0.1) and storage temperature (4 and 25 °C) were determined on lipid oxidation, fatty acids profile, β-carotene degradation, and other physicochemical properties of flaxseed oil-in-water nanoemulsions. Nanoemulsions containing small anionic droplets (≈ 100 nm) were fabricated using high-pressure homogenization. Although an increase in the viscosity and physical stability of nanoemulsions was observed with increasing Φ, but mean droplet diameter and chemical stability decreased. β-carotene degradation, free fatty acids formation, as well as thiobarbituric acid-reactive substances production, were all faster in the more concentrated emulsions. As the storage temperature raised, physical and chemical stability both decreased. Interestingly, while the ratio of α-linolenic acid to linoleic acid in bulk oil decreased over time, an opposite trend was observed in the nanoemulsions. This effect was due to differences in the location of different unsaturated fatty acids inside the oil nanodroplets.

  相似文献   

3.
ABSTRACT

The protein and oil contents in soybean seeds are major factors in seed quality. Seed proteins and oils are synthesized from sucrose and nitrogenous compounds transported into maturing seeds. In this study, we compared changes in the activity of phosphoenolpyruvate carboxylase (PEPC) and the accumulation profiles of protein and oil in maturing seeds of two soybean cultivars, which exhibit different protein and oil contents in seeds, to determine the interrelationships of them. A principal component analysis indicated a concordance of seed PEPC activity with the protein content, but did not with the oil content. PEPC activity per seed was highest in the late maturation stage, when the physiological status of the vegetative organs drastically changed. The high-protein cultivar had higher PEPC activity compared to the low-protein cultivar. These results highlight the biological role of PEPC in the synthesis of protein, therefore it was implied that PEPC could be a biomarker in soybean breeding.

Abbreviations: ANOVA: analysis of variance; DS: developmental stage; DW: dry weight; FW: fresh weight; NIR: near infrared; PEP(C): phosphoenolpyruvate (carboxylase); PC(A): principal component (analysis); S.E.: standard error; WC: water content.  相似文献   

4.
Soybean (Glycine max) produces seeds that are rich in unsaturated fatty acids and is an important oilseed crop worldwide. Seed oil content and composition largely determine the economic value of soybean. Due to natural genetic variation, seed oil content varies substantially across soybean cultivars. Although much progress has been made in elucidating the genetic trajectory underlying fatty acid metabolism and oil biosynthesis in plants, the causal genes for many quantitative trait loci (QTLs) regulating seed oil content in soybean remain to be revealed. In this study, we identified GmFATA1B as the gene underlying a QTL that regulates seed oil content and composition, as well as seed size in soybean. Nine extra amino acids in the conserved region of GmFATA1B impair its function as a fatty acyl–acyl carrier protein thioesterase, thereby affecting seed oil content and composition. Heterogeneously overexpressing the functional GmFATA1B allele in Arabidopsis thaliana increased both the total oil content and the oleic acid and linoleic acid contents of seeds. Our findings uncover a previously unknown locus underlying variation in seed oil content in soybean and lay the foundation for improving seed oil content and composition in soybean.  相似文献   

5.
Abstract

The aim of the present study was to formulate six different plant seed oils namely canola, cotton, flax, olive, sesame and soybean as emulsifiable concentrates. The composition of the formulation comprises at least one organic solvent, one surfactant and one plant oil. Physico-chemical properties of the formulated oils (emulsion stability test, cold stability and heat stability tests) were measured. The successfully emulsified oils were evaluated for nematicidal activity against Meloidogyne incognita infecting tomato plants under greenhouse conditions. Emulsified canola oil proved to be the most effective oil as a protectant against M. incognita infection to tomatoes followed by soybean, cotton, flax and sesame oil. In addition, employing a high rate of the tested emulsified oils gave higher activity in suppressing nematodes both in the soil and in tomato roots than using a low rate. Moreover, all tested formulated oils at both rates of application had no adverse effect on the growth of tomato plants except sesame oil which significantly decreased the shoot length when compared to the control. The prepared plant oils might be used as potential sources for sustainable eco-friendly botanical nematicides to protect plants from nematode attack.  相似文献   

6.
Nuray Özer 《BioControl》2011,56(2):237-247
Twelve isolates belonging to the genera Aspergillus, Penicillium, and Trichoderma, from onion (Allium cepa L.)-growing soils were recently found to have antagonistic features against Aspergillus niger (An) van Tieghem, the cause of black mold disease of onion, in dual culture. In the work reported in this paper, the function of these isolates applied as seed treatment on onion seed germination was investigated. In addition, isolates with no negative effect on seeds were screened for their effect on shoot length, and for their abilities to inhibit colonization of An on seeds, to control black mold disease, to increase set bulb diameter, and to induce production of antifungal compounds in pot-grown onion sets. Application of non-aflatoxigenic A. flavus Link (AS3), T. harzianum Rifai (TRIC7) and (TRIC8) to seeds led to defense reactions with accumulation of antifungal compounds in sets, combined with increased protection against the disease, although they did not enhance bulb diameter.  相似文献   

7.
8.
In order to learn the best time for harvesting Neem (Azadirachtaindica) seeds, the amount of the five major triterpenoids, togetherwith the oil content have been determined throughout a fruitingseason in six selected trees in Sri Lanka. The triterpenoidcontent and the relative proportions of the major compoundschanged little from the hard green fruit stage to mature seeds,while the oil content increased markedly with time. The highestcontent of azadirachtin (10 mg g-1seed kernels) was recordedin newly ripened seeds. There was some loss of salannin andazadirachtin in storage after harvesting for up to 6 months. Azadirachtin; salannin; nimbin; neem seeds; neem fruit; seasonal change; neem oil; seed storage; Azadirachta indica ; Meliaceae  相似文献   

9.
The relationship between biocontrol activity of Pseudomonas putida strain N1R against Pythium ultimum on pea and soybean seeds and the reduction in ethanol evolution by imbibed seeds was investigated under different treatment conditions, including temperature and numbers of seed‐applied cells of the bacterium. Treatment with strain N1R increased emergence at all temperatures, except for soybean at 12 °C and reduced ethanol concentration in the spermosphere of imbibed seeds at several temperatures. The concentration of bacterial cells in the seed treatment suspension also significantly affected biocontrol efficiency and reduced ethanol production, especially in pea seeds. In contrast, the duration (0–7 h) of submergence of seeds in bacterial suspension had little effect on biocontrol activity of N1R, although submergence of soybean seeds reduced their emergence even in the absence of the pathogen or biocontrol agent. Competition for seed‐derived compounds, including ethanol, is suggested to be one possible mechanism of biocontrol of Pythium by strain N1R, which is not known to produce antifungal antibiotics.  相似文献   

10.
Oil and protein are the most valuable components of soybean seed. Evidence indicates that growth and composition of soybean seed are controlled by supplies of carbon and nitrogen provided by the maternal plant to the seed, but it is difficult experimentally to control and quantify the precise amount of carbon and nitrogen provided to the seed by the whole plant. To examine whether oil and protein concentrations are affected by the supply of nitrogen to the seed, immature soybean seeds (Glycine max cv. Williams 82) were grown in vitro in nutrient solutions containing 20, 40, 60 or 80 mM of glutamine. The seeds were incubated in Erlenmeyer flasks for 8 days at 25°C. The rate of dry matter accumulation changed from 7.2 to 8.3 mg seed−1 day−1 as the glutamine concentration increased from 20 to 80 mM but the differences were not significant (P 0.05). Seed protein concentration increased as glutamine concentration increased from 294 mg g−1 at 20 mM glutamine to as high as 445 mg g−1 at 80 mM glutamine. Typical in vivo protein concentration of mature soybean seeds is about 400 mg g−1. Oil and protein concentrations were negatively correlated (r2= 0.44), which indicates that oil and protein synthesis are interrelated. Protein synthesis was favoured over oil synthesis when nitrogen became more abundant. The seeds used in this study clearly demonstrated a capacity to respond to nitrogen availability with changes in seed protein concentration.  相似文献   

11.
The difference in carotenoid components among various color types of soybean seeds, and the changes in carotenoid composition during seed development were examined by reverse-phase high-performance liquid chromatogrphy (HPLC). Lutein was the major carotenoid component in seed extracts from the common yellow soybean and from a variety having a black seed coat. Green soybean seeds contained several xanthophylls in addition to lutein. None of the mature soybean seeds contained β-carotene, a part from a trace amount being detected in a local variety of green soybean. The total carotenoid and lutein contents were higher in green soybeans than in the yellow types, and the estimated total amount of carotenoids correlates with that of chlorophylls. The thylakoid membrane residue in the plastids of green soybean had lost its functional lamella structure. Immature soybean seeds contained a green-vegetable type of carotenoids including α- and β-carotene. The amount of β-carotene decreased more rapidly than that of lutein and chlorophylls during seeds maturation. These results suggest that β-carotene, which acts as a photo-protective agent in developing seeds, is susceptible to degradation in the course of seed maturation.  相似文献   

12.
The in vitro compatibility of Metarhizium acridum strain IMI 330189 with different concentrations of Neem seed oil Azadirachta indica A. Juss. was investigated under laboratory conditions. Water, diesel and ground nut oil dilutions of M. acridum were inoculated into semi-synthetic culture medium with Neem oil and incubated for 10 days at 20, 28, and 34°C. Fungus vegetative growth and conidia production were estimated and compatibility calculated according to the in vitro classification model [T]. Field tests were also conducted during two successive years, where fourth instar nymphs of the Tree Locust, Anacridium melanorhodon melanorhodon, were sprayed with Metarhizium, Metarhizium/Neem mixture, Neem, or Malathion, on a plantation of Acacia senegal. Samples of the treated nymphs were taken 24 h after application, placed in cages and their mortality observed daily for 3 weeks. The compatibility test revealed that at 28°C, all Neem concentrations below 2% were compatible with M. acridum and concentrations of 2 and 2.5% were moderately toxic, while at 20°C, 1.0% Neem was not compatible with the fungus. In the field, Metarhizium+Neem resulted in 74 and 92% mortality during two successive years compared to 64 and 83% for Metarhizium alone. These findings clearly reveal that Neem concentration on the mixture could be increased to just under 1.0% Neem without negative impact on the fungus and that mixing Metarhizium with small quantities of Neem oil accelerates locust mortality and increases efficacy.  相似文献   

13.
Much of the economic value of soybean (Glycine max) is based on the amount of protein and oil produced in the seeds. To examine the influence of temperature on seed oil and protein concentration, immature soybean seeds (cv. Williams 82) were grown in vitro at temperatures of 17°C, 21°C, 25°C, 29°C and 33°C. Dry growth rate (DGR) was calculated to be maximal at 23.7°C. Oil and protein concentration and seed growth rate did not show statistical difference (P > 0.05) within the temperature range from 21–29°C. Across all temperatures, however, a quadratic regression on oil concentration (R2 = 0.66) showed a minimum at 24.1°C and a quadratic regression on protein concentration (R2 = 0.59) showed a minimum at 24.3°C. Dilution by increased dry matter accumulation in the seed accounted for much of the variation in oil and protein concentration and the two concentrations were equally affected across temperatures. Consequently, oil and protein concentrations were positively related over the tested range of temperature. It was concluded that under these conditions the rate of dry matter accumulation by soybean seeds was critical in influencing seed oil and protein concentrations.  相似文献   

14.
15.
The initial characteristics of emulsions and the rearrangement of the oil droplets in the film matrix during film drying, which defines its microstructure, has an important role in the physical properties of the emulsion-based films. The objective of this work was to study the effect of the microstructure (two droplet size distributions) and stability (with or without surfactant) of HPMC oil-in-water emulsions over physical properties of HPMC emulsion-based edible films. HPMC was used to prepare sunflower oil-in-water emulsions containing 0.3 or 1.0% (w/w) of oil with or without SDS, as surfactant, using an ultrasonic homogenizer. Microstructure, rheological properties and stability of emulsions (creaming) were measured. In addition, microstructure, coalescence of oil droplets, surface free energy, optical and mechanical properties and water vapor transfer of HPMC films were evaluated. Image analysis did not show differences among droplet size distributions of emulsions prepared at different oil contents; however, by using SDS the droplet size distributions were shifted to lower values. Volume mean diameters were 3.79 and 3.77μm for emulsions containing 0.3 and 1.0% without surfactant, respectively, and 2.72 and 2.71μm for emulsions with SDS. Emulsions formulated with 1.0% of oil presented higher stability, with almost no change during 5 and 3 days of storage, for emulsions with and without SDS, respectively. Internal and surface microstructure of emulsion-based films was influenced by the degree of coalescence and creaming of the oil droplets. No effect of microstructure over the surface free energy of films was found. The incorporation of oil impaired the optical properties of films due to light scattering of light. Addition of oil and SDS decreased the stress at break of the emulsion-based films. The replace of HPMC by oil and SDS produce a lower "amount" of network structure in the films, leading to a weakening of their structure. The oil content and SDS addition had an effect over the microstructure and physical properties of HPMC-based emulsions which lead to different microstructures during film formation. The way that oil droplets were structured into the film had an enormous influence over the physical properties of HPMC films.  相似文献   

16.
greenhouse experiment with factorial arrangement based on randomized complete block design with four replications was conducted in 2015 to evaluate the effects of salicylic acid (SA) (1 mM) and jasmonic acid (JA) (0.5 mM) on oil accumulation and fatty acid composition of soybean oil (Glycine max L.) under salt stress (Non-saline, 4, 7, and 10 dS/m NaCl). Oil percentage of soybean seeds declined, while oil content per seed enhanced with increasing seed filling duration. Foliar application of SA improved oil content per soybean seed at different stages of development under all salinity levels. Although JA treatment enhanced seed oil percentage, oil yield of these plants decreased as a result of reduction in seed yield per plant. In contrast, the highest oil yield was recorded for SA treated plants, due to higher seed yield. Salinity had no significant effects on percentage of palmitic acid and stearic acid, but treatment with JA significantly reduced stearic acid percentage. Oleic acid content of seeds increased, but percentages of linoleic acid, linolenic acid and unsaturation index (UI) of soybean oil decreased with increasing salinity. Foliar application of SA and JA improved oil quality of soybean seeds by reducing oleic acid and enhancing linoleic acid, linolenic acid contents and UI. Exogenous application of SA had the most beneficial effects on soybean seeds due to enhancing oil yield and quality under saline and non-saline conditions.  相似文献   

17.
Phospholipase D (PLD) is capable of hydrolyzing membrane phospholipids, producing phosphatidic acid. To alter phospholipid profiles in soybean seed, we attenuated PLD enzyme activity by an RNA interference construct using the partial sequence from a soybean PLDα gene. Two transgenic soybean lines were established by particle inflow gun (PIG) bombardment by co‐bombarding with pSPLDi and pHG1 vectors. The lines were evaluated for the presence and expression of transgenes thoroughly through the T4 generation. PLD‐suppressed soybean lines were characterized by decreased PLDα enzyme activity and decreased PLDα protein both during seed development and in mature seeds. There was no change in total phospholipid amount; however, the PLD‐attenuated transgenic soybean seed had higher levels of di18 : 2 (dilinoleoyl)‐phosphatidylcholine (PC) and ‐phosphatidylethanolamine (PE) in seeds than the non‐transgenic lines. The increased polyunsaturation was at the expense of PC and PE species containing monounsaturated or saturated fatty acids. In addition to increased unsaturation in the phospholipids, there was a decrease in unsaturation of the triacylglycerol (TAG) fraction of the soybean seeds. Considering recent evidence for the notion that desaturation of fatty acids occurs in the PC fraction and that the PC → DAG (diacylglycerol) → TAG pathway is the major route of TAG biosynthesis in developing soybean seed, the current data suggest that PLDα suppression slows the conversion of PC to TAG. This would be consistent with PLD playing a positive role in that conversion. The data indicate that soybean PLD attenuation is a potentially useful approach to altering properties of edible and industrial soybean lecithin.  相似文献   

18.
Transmission of potato vims Y to sweet pepper by the green peach aphid, Myzus persicae (Sulzer), was inhibited by foliar applications of 1.0% or 2.0% neem seed oil to infected source plants or to uninfected recipient plants. Neem seed oil interfered with virus acquisition and inoculation in a manner comparable to that of a commercial horticultural oil, while an oil-free neem seed extract did not reduce rates of transmission compared with controls. The finding that neem seed oil inhibits virus transmission, while oil-free neem seed extract does not, suggests that the presence of the oil rather than biologically active limonoids such as azadirachtin interfere with virus transmission. None of the treatments affected rates of infection when potato virus Y was transmitted mechanically, or the resulting virus titre and symptom expression. In addition to direct control of insect pests, formulated neem oils may help reduce or delay the spread of non-persistent plant viruses.  相似文献   

19.
Experiments were conducted to study the influence of sowing seasons and drying methods on the seed vigour of two spring soybean (Glycine max (L.) Merr.) cultivars. Two cultivars, ‘Huachun18’ and ‘Huachun 14’, were sown in three seasons viz., spring, summer and autumn and the harvested seeds were dried using three different methods. The results showed that soybean sown in spring had a higher number of branches per plant, pods per branch and seed weight, and consequently resulted in higher seed yields than that of soybean sown in autumn or summer seasons. Seeds sown in the autumn season had the lowest values of electrical conductivity during seed imbibitions, higher peroxidase (POD) activity in germinated seedlings and lower contamination by the seed-borne fungi on the MS medium, which indirectly improved the seed vigour, which was followed by summer sown seeds. Seeds sown during the spring season resulted in poor seed vigour. In addition, the effect of drying methods on the seed vigour was also clarified. Seeds that hung for four days before threshing and then air-dried had the poorest seed vigour which was determined by germination, electrical conductivity, POD activity and seed borne fungal growth. There was no difference in seed vigour between other methods, i.e. seeds threshed directly at harvest and then air-dried on a bamboo sifter or concrete floor. These results indicated that autumn sowing soybean and the drying method in which seeds were threshed directly at harvest and then air-dried on a bamboo sifter resulted in higher seed vigour.  相似文献   

20.
Plastic materials for food packaging are being replaced by biodegradable films based on biopolymers due to the adverse effects they have had on animal life and the environment. In this study, nanocomposite films containing 2.5 wt% sodium caseinate and 2 wt% glycerol were reinforced with 0.1 or 0.2 wt% nano TiO2 prepared in two forms: spheres (P25) and tubes. The effects of nanoreinforcement geometry on mechanical, tensile, barrier, thermogravimetric, and optical properties, and distribution of nanoparticles were described. The interactions among film components were analyzed by Fourier transform infrared spectroscopy (FTIR). Addition of nanotubes significantly increased E' (341 wt%) and E" (395 wt%) moduli, the Young modulus E (660 wt%), the residual mass at 500°C (38 wt%), and color change (6.78) compared to control film. The compositional mapping studies showed that P25 nanoparticles were homogeneously distributed between the surfaces of the film while nanotubes were found on the bottom surface. The changes in position of the FTIR spectra signals as compared to pure protein signals indicated strong matrix/reinforcement interactions. In addition, the changes in intensity in 1100, 1033, and 1638 cm−1 FTIR signals suggested formation of a protein/Tween 20 ester. The geometry of reinforcement was highly relevant regarding physical properties, showing nanotubes as being very successful for enhancing tensile properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号