首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task.  相似文献   

2.
Auditory feedback is required to maintain fluent speech. At present, it is unclear how attention modulates auditory feedback processing during ongoing speech. In this event-related potential (ERP) study, participants vocalized/a/, while they heard their vocal pitch suddenly shifted downward a ½ semitone in both single and dual-task conditions. During the single-task condition participants passively viewed a visual stream for cues to start and stop vocalizing. In the dual-task condition, participants vocalized while they identified target stimuli in a visual stream of letters. The presentation rate of the visual stimuli was manipulated in the dual-task condition in order to produce a low, intermediate, and high attentional load. Visual target identification accuracy was lowest in the high attentional load condition, indicating that attentional load was successfully manipulated. Results further showed that participants who were exposed to the single-task condition, prior to the dual-task condition, produced larger vocal compensations during the single-task condition. Thus, when participants’ attention was divided, less attention was available for the monitoring of their auditory feedback, resulting in smaller compensatory vocal responses. However, P1-N1-P2 ERP responses were not affected by divided attention, suggesting that the effect of attentional load was not on the auditory processing of pitch altered feedback, but instead it interfered with the integration of auditory and motor information, or motor control itself.  相似文献   

3.
Changes in neuromuscular strategies employed with fatigue during multi-joint movements are still poorly understood. Studies have shown that motor variability of individual joints increases when performing upper limb tasks to fatigue, while movement parameters related to the task goal remain constant. However, how the inter-limb coordination and its variability change during specific movement phases with fatigue is still unclear. The aim of this study was to assess the effects of neck-shoulder fatigue on shoulder and elbow kinematic variabilities, shoulder-elbow coordination and its variability, and endpoint characteristics during different phases of a forward pointing movement. Nineteen healthy young adults continuously performed a repetitive pointing task until fatigue (Borg rating of 8/10). Changes in elbow-shoulder coordination through the movement were assessed using the continuous relative phase and statistical nonparametric mapping methods. At the end of the task, muscle fatigue was evidenced by significant increases in anterior deltoid (+13%) and biceps brachii (+30%) activity. Shoulder horizontal abduction, elbow flexion variability and shoulder-elbow coordination variability were increased with fatigue at different moments of the movement cycle (shoulder: during the first 17% and most of the second half movement, elbow: from 73% to 91%, coordination: almost the whole movement). However, movement timing errors and endpoint spatial variability were mostly preserved, even with fatigue. We showed that increased variability with fatigue is not only observed in the fatigued joint (shoulder), but also in the elbow and shoulder-elbow coordination, and may have a goal of preserving global task performance.  相似文献   

4.
The objective of this study was to investigate the reciprocal influences of stance pattern (bilateral stance vs. unilateral stance) and thumb-index precision grip task (static target vs. dynamic target) on postural–suprapostural tasks by manipulating task-load. Fifteen healthy volunteers participated in four postural–suprapostural tasks, including static force-matching in bilateral/unilateral stance (BS_static; US_static), dynamic force-matching in bilateral/unilateral stance (BS_dynamic; US_dynamic), and two control tasks in bilateral and unilateral stances without a finger task. The normalized force error (NFE), reaction time (RT) of the finger tasks, and normalized change in center of pressure sway (ΔNCoP) were measured. For suprapostural task performance, a significant interaction effect between postural and suprapostural tasks on NFE of the finger tasks was noted (static: BS < US; dynamic: BS > US), but RT was not different among the four tasks. For postural task performance, negative ΔNCoP during unilateral stance indicated a spontaneous reduction in postural sway due to added force-matching. In contrast, addition of force-matching tended to increase postural sway during bilateral stance, but postural fluctuations decreased as task-load of suprapostural task increased (BS_dynamic < BS_static). In conclusion, performance of postural–suprapostural tasks was differently modulated by task-load increment. Our observations favored adaptive resource-sharing and implicit expansion of resource capacity for a postural task with a motor suprapostural goal.  相似文献   

5.
The purpose of this study was to investigate cortical mechanisms upstream to the corticospinal motor neuron that may be associated with central fatigue and sense of effort during and after a fatigue task. We used two different isometric finger abduction protocols to examine the effects of muscle activation and fatigue the right first dorsal interosseous (FDI) of 12 participants. One protocol was intended to assess the effects of muscle activation with minimal fatigue (control) and the other was intended to elicit central fatigue (fatigue). We hypothesized that high frequency repetitive transcranial magnetic stimulation (rTMS) of the supplementary motor area (SMA) would hasten recovery from central fatigue and offset a fatigue-induced increase in sense of effort by facilitating the primary motor cortex (M1). Constant force-sensation contractions were used to assess sense of effort associated with muscle contraction. Paired-pulse TMS was used to assess intracortical inhibition (ICI) and facilitation (ICF) in the active M1 and interhemispheric inhibitory (IHI) was assessed to determine if compensation occurs via the resting M1. These measures were made during and after the muscle contraction protocols. Corticospinal excitability progressively declined with fatigue in the active hemisphere. ICF increased at task failure and ICI was also reduced at task failure with no changes in IHI found. Although fatigue is associated with progressive reductions in corticospinal excitability, compensatory changes in inhibition and facilitation may act within, but not between hemispheres of the M1. rTMS of the SMA following fatigue enhanced recovery of maximal voluntary force and higher levels of ICF were associated with lower sense of effort following stimulation. rTMS of the SMA may have reduced the amount of upstream drive required to maintain motor output, thus contributing to a lower sense of effort and increased rate of recovery of maximal force.  相似文献   

6.
The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates.  相似文献   

7.
In daily life, object manipulation is usually performed concurrently to the execution of cognitive tasks. The aim of the present study was to determine which aspects of precision grip require cognitive resources using a motor-cognitive dual-task paradigm. Eighteen healthy participants took part in the experiment, which comprised two conditions. In the first condition, participants performed a motor task without any concomitant cognitive task. They were instructed to grip, lift and hold an apparatus incorporating strain gauges allowing a continuous measurement of the force perpendicular to each contact surface (grip force, GF) as well as the total tangential force applied on the object (load force, LF). In the second condition, participants performed the same motor task while concurrently performing a cognitive task consisting in a complex visual search combined with counting. In the dual-task condition, we found a significant increase in the duration of the preload phase (time between initial contact of the fingers with the apparatus and onset of the load force), as well as a significant increase of the grip force during the holding phase, indicating that the cognitive task interfered with the initial force scaling performed during the preload phase and the fine-tuning of grip force during the hold phase. These findings indicate that these aspects of precision grip require cognitive resources. In contrast, other aspects of the precision grip, such as the temporal coupling between grip and load forces, were not affected by the cognitive task, suggesting that they reflect more automatic processes. Taken together, our results suggest that assessing the dynamic and temporal parameters of precision grip in the context of a concurrent cognitive task may constitute a more ecological and better-suited tool to characterize motor dysfunction in patients.  相似文献   

8.
Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment.  相似文献   

9.
During the foreperiod of a forewarned reaction time (RT) task reflexes in the executing limb increase to a lesser extent than those in the contralateral limb. This is possibly due to input modulation. The present study investigates the possibility of cutaneous sensory modulation during motor preparation by studying the amplitudes of somatosensory evoked potentials (SEPs). Eighteen subjects performed a forewarned RT task with the same fingers as the ones which were electrically stimulated. SEPs evoked during the 4 sec preparatory period were compared to those evoked during movement execution and during the resting period after the motor response respectively. During response execution most SEP components showed smaller amplitudes, i.e., they were gated, which agrees with other studies. In the first part of the foreperiod no SEP modulation was observed. Towards the end of the foreperiod, 500 msec before the response stimulus (RS), the amplitude of the contralateral parietal N70-P100 was significantly decreased, while the P45-N70 showed a similar tendency. However, at the same time the P100-N140 was increased in amplitude. The decrease of the intermediate latency components towards the end of the foreperiod is discussed in terms of gating, while the increase in the long latency component is discussed with respect to a decrease in RT on trials where the fingers were stimulated just before the RS, pointing to the role of attentional mechanisms.  相似文献   

10.

Objective

The nature of changes in brain activation related to good recovery of arm function after stroke is still unclear. While the notion that this is a reflection of neuronal plasticity has gained much support, confounding by compensatory strategies cannot be ruled out. We address this issue by comparing brain activity in recovered patients 6 months after stroke with healthy controls.

Methods

We included 20 patients with upper limb paresis due to ischemic stroke and 15 controls. We measured brain activation during a finger flexion-extension task with functional MRI, and the relationship between brain activation and hand function. Patients exhibited various levels of recovery, but all were able to perform the task.

Results

Comparison between patients and controls with voxel-wise whole-brain analysis failed to reveal significant differences in brain activation. Equally, a region of interest analysis constrained to the motor network to optimize statistical power, failed to yield any differences. Finally, no significant relationship between brain activation and hand function was found in patients. Patients and controls performed scanner task equally well.

Conclusion

Brain activation and behavioral performance during finger flexion-extensions in (moderately) well recovered patients seems normal. The absence of significant differences in brain activity even in patients with a residual impairment may suggest that infarcts do not necessarily induce reorganization of motor function. While brain activity could be abnormal with higher task demands, this may also introduce performance confounds. It is thus still uncertain to what extent capacity for true neuronal repair after stroke exists.  相似文献   

11.
Aging and dual-task paradigms often degrade fine motor performance, but the effects of aging on correlated neural activity between motor cortex and contracting muscle are unknown during dual tasks requiring fine motor performance. The purpose of this study was to compare corticomuscular coherence between young and elderly adults during the performance of a unilateral fine motor task and concurrent motor and cognitive tasks. Twenty-nine healthy young (18-38 yr) and elderly (61-75 yr) adults performed unilateral motor, bilateral motor, concurrent motor-cognitive, and cognitive tasks. Peak corticomuscular coherence between the electroencephalogram from the primary motor cortex and surface electromyogram from the first dorsal interosseous muscle was compared during steady abduction of the index finger with visual feedback. In the alpha-band (8-14 Hz), corticomuscular coherence was greater in elderly than young adults especially during the motor-cognitive task. The beta-band (15-32 Hz) corticomuscular coherence was higher in elderly than young adults across unilateral motor and dual tasks. In addition, beta-band corticomuscular coherence in the motor-cognitive task was negatively correlated with motor output error across young but not elderly adults. The results suggest that 1) corticomuscular coherence was increased in senior age with a greater influence of an additional cognitive task in the alpha-band and 2) individuals with greater beta-band corticomuscular coherence may exhibit more accurate motor output in young, but not elderly adults, during steady contraction with visual feedback.  相似文献   

12.
Neurophysiologic theory and some empirical evidence suggest that fatigue caused by physical work may be more effectively recovered during “diverting” periods of cognitive activity than during passive rest; a phenomenon of great interest in working life. We investigated the extent to which development and recovery of fatigue during repeated bouts of an occupationally relevant reaching task was influenced by the difficulty of a cognitive activity between these bouts. Eighteen male volunteers performed three experimental sessions, consisting of six 7-min bouts of reaching alternating with 3 minutes of a memory test differing in difficulty between sessions. Throughout each session, recordings were made of upper trapezius muscle activity using electromyography (EMG), heart rate and heart rate variability (HRV) using electrocardiography, arterial blood pressure, and perceived fatigue (Borg CR10 scale and SOFI). A test battery before, immediately after and 1 hour after the work period included measurements of maximal shoulder elevation strength (MVC), pressure pain threshold (PPT) over the trapezius muscles, and a submaximal isometric contraction. As expected, perceived fatigue and EMG amplitude increased during the physical work bouts. Recovery did occur between the bouts, but fatigue accumulated throughout the work period. Neither EMG changes nor recovery of perceived fatigue during breaks were influenced by cognitive task difficulty, while heart rate and HRV recovered the most during breaks with the most difficult task. Recovery of perceived fatigue after the 1 hour work period was also most pronounced for the most difficult cognitive condition, while MVC and PPT showed ambiguous patterns, and EMG recovered similarly after all three cognitive protocols. Thus, we could confirm that cognitive tasks between bouts of fatiguing physical work can, indeed, accelerate recovery of some factors associated with fatigue, even if benefits may be moderate and some responses may be equivocal. Our results encourage further research into combinations of physical and mental tasks in an occupational context.  相似文献   

13.
Summary The effects of the non-competitive NMDA antagonist dizocilpine in tests of cognitive function have been compared with its effects on motor function in rats. Severe motor impairments were observed at doses above 0.1 mg/kg. Dizocilpine (0.075 mg/kg) had no effect on the acquisition of a spatial discrimination task in a Y-maze, but disrupted reversal learning. Both the acquisition and reversal of a visual discrimination task were impaired following dizocilpine (0.075 mg/kg). Dizocilpine (0.04 mg/kg) also disrupted performance of a fivechoice visual reaction time task. It is clear that dizocilpine can impair cognitive function at doses which do not induce pronounced motor dysfunction. The impairment induced by dizocilpine includes a disruption of spatial discrimination learning and a deficit in tasks with sustained attentional demands.  相似文献   

14.

Background

This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing.

Methods

Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials.

Findings

(1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity.

Interpretation

Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities.  相似文献   

15.
The purpose of this study was to examine the effects of repetition maximum (RM) loads and training patterns on acute neuromuscular responses in the upper body. Markers of fatigue were monitored under a descending pattern (DP), in which repetitions decreased in subsequent sets, and an ascending pattern (AP), in which repetitions increased in subsequent sets. Both training patterns were performed using 5- and 10-RM loads. Fatigue was assessed by monitoring changes in force output, motor unit activation and muscle twitch characteristics (peak twitch [PT], time to PT [TPT], and ? relaxation time [RT]). All 4 protocols (5-RM DP, 5-RM AP, 10-RM DP, and 10-RM AP) produced significant decreases pre to postprotocol in force output, TPT, and ?RT. With the exception of 5-RM DP, all protocols produced significant decreases in motor unit activation. Pre to postprotocol, PT forces were potentiated under 5-RM loads, whereas they were depressed under 10-RM loads. Hence, a main effect for training protocols showed that changes in PT force were significantly different under 5-RM, as compared to 10-RM loads. The results indicate that central fatigue may be independent of load and pattern, whereas peripheral fatigue would appear to be dependent on load but not pattern.  相似文献   

16.
Seven healthy subjects were investigated in cyclic ramp-and-hold long lasting isometric contractions. Wire branched electrodes were used for selective recording of single motor unit (MU) potentials from m. biceps brachii. MU behaviour was defined in terms of recruitment/derecruitment thresholds (RT and DT) and the duration of interspike intervals (ISI). A total of 63 MUs was investigated: 40 units were active from the beginning of the task performance and another 23 were recruited later. There were no changes in the recruitment pattern of MUs with fatigue development - a short first ISI followed by a very long second one and an almost constant firing rate after this transient phase. The tendency of RT to gradually decrease dominates the results. Thus, the required constant rate of force increase with fatigue development was maintained mostly by the mechanisms of space coding (i.e., decrease of RT and recruitment of additional MUs). Oppositely, the time behaviour of the DT changes was not uniform and rate coding was an essential mechanism in the adaptation of MU activity to muscle fatigue during relaxation phases. The recruitment pattern and fatigue related behaviour of the additionally recruited MUs were similar to those of MUs active from the first cycle of the motor task performance.  相似文献   

17.
These data describe improved modulation of discharge rates (rate coding) of first dorsal interosseous motor units throughout the acquisition of a complex force-matching skill involving isometric index finger abduction. In each of 15 consecutive trials, subjects attempted to match their force to a trajectory consisting of the sum of two sine waves (0.15 and 0.5 Hz) and random oscillations (overall mean force level ˜20% MVC). Reductions in root-mean-square (RMS) error of each subject’s force relative to the trajectory indicated substantial improvements in force-matching ability (F=33.8, p<0.001). With the acquisition of this new skill, there was increased amplitude modulation of muscular force near both dominant frequencies of the force-matching trajectory (F=10.6, p=0.008). The standard deviation and coefficient of variation of motor unit inter-spike intervals both decreased with improved performance indicating a general reduction in the amplitude of firing rate modulations (SD: F=18.69, p=0.001; CV: F=43.6, p<0.001). After skill acquisition, there was decreased firing rate modulation outside of the two dominant frequencies and increased amplitude of firing rate modulation at the higher of the two dominant frequencies (0.5 Hz, F=8.23, p=0.015). These findings indicate that improved precision of rate coding was a contributor to the acquisition of the new force-matching task. That the change in rate coding was frequency dependent suggests that factors other than frequency coding may contribute to the improved force matching at 0.15 Hz.  相似文献   

18.
This experiment tested the effect of a dual-task on time reproduction in 5- and 8-year-olds. Children had to reproduce a stimulus duration lasting for 6 or 12 s, during which they either did or did not perform a concurrent non-temporal task (i.e. picture naming) both in low (LA) and high (HA) attentional demand conditions. The results showed that children reproduced shorter durations in the dual-task than in the single-task condition, whatever the duration value used. However, this shortening effect was greater in the 5-year-olds than in the 8-year-olds. Furthermore, in the 5-year-olds, temporal reproductions were significantly shorter in both dual-tasks (LA or HA) than in the single-task, whereas, in the 8-year-olds, differences reached significance only between the HA dual-task and the single-task. In the non-temporal task, the proportion of naming errors was also greater in the dual-task than in the single-task, especially under high attentional demand, but it did not significantly differ between the two age groups tested.  相似文献   

19.
We have previously demonstrated that fatigue at different locations impacts joint angles, angular variability, and coordination variability differently. However, the neuromuscular control aspects underlying these kinematic changes have never been demonstrated. Seventeen young adults (8 males) were recruited. Electromyographic electrodes were placed on: upper trapezius, pectoralis major, anterior and middle deltoid, biceps and triceps brachii, and left and right erector spinae. Subjects performed the repetitive pointing task (RPT) at 1 Hz for 30 s before and after localized fatigue tasks, which consisted of one shoulder, one elbow and one lower back isometric fatiguing protocols until exhaustion in randomized order. Electromyographic amplitude (RMS), variability (SD) and mean power frequency (MnPF) were calculated for each of the pre-fatigue and post-fatigue RPT trials. There were sex × fatigue location interaction effects on upper trapezius RMS (p = 0.038) with males’ values increasing the most after shoulder fatigue. Females’ triceps brachii RMS was greater compared to males after shoulder, elbow, and trunk fatigue (p = 0.003, p = 0.001 and p = 0.007 respectively). There were sex × fatigue location effects on left erector spinae MnPF (p = 0.011) with males and females’ values decreasing the most after trunk fatigue, but more so in males. Results demonstrate that males and females compensate differently during a repetitive pointing task when their elbows, shoulders and trunks are locally fatigued, which could have implications on sex-specific workplace injury risks. See Table 1 for acronyms.  相似文献   

20.
In paraplegic patients with upper motor neuron lesions the signal path from the central nervous system to the muscles is interrupted. Functional electrical stimulation applied to the lower motor neurons can replace the lacking signals. A so-called neuroprosthesis may be used to restore motor function in paraplegic patients on the basis of functional electrical stimulation. However, the control of multiple joints is difficult due to the complexity, nonlinearity, and time-variance of the system involved. Furthermore, effects such as muscle fatigue, spasticity, and limited force in the stimulated muscle further complicate the control task. Mathematical models of the human musculoskeletal system can support the development of neuroprosthesis. In this article a detailed overview of the existing work in the literature is given and two examples developed by the author are presented that give an insight into model-based development of neuroprosthesis for paraplegic patients. It is shown that modelling the musculoskeletal system can provide better understanding of muscular force production and movement coordination principles. Models can also be used to design and test stimulation patterns and feedback control strategies. Additionally, model components can be implemented in a controller to improve control performance. Eventually, the use of musculoskeletal models for neuroprosthesis design may help to avoid internal disturbances such as fatigue and optimize muscular force output. Furthermore, better controller quality can be obtained than in previous empirical approaches. In addition, the number of experimental tests to be performed with human subjects can be reduced. It is concluded that mathematical models play an increasing role in the development of reliable closed-loop controlled, lower extremity neuroprostheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号