首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《IRBM》2009,30(1):3-9
The object of this study was to compute the mechanical power of the resultant braking force during an actual propulsion cycle with a manual wheelchair on the field. The resultant braking force was calculated from a mechanical model taking into account the rolling resistances of the front and rear wheels. Both the resultant braking force and the wheelchair velocity were not constant during the propulsion cycle and varied according to the subject's fore-and-aft and vertical movements in the wheelchair. These variations had logical repercussions on the braking force mechanical power, which ranged from 20.6 to 34.5 W (mean = 29.6 W) during the propulsion cycle. The mechanical power was also calculated from the conditions of a classical drag test, by the product of the cycle mean velocity and a constant braking force corresponding to a 60% rear wheels distribution of the subject-and-wheelchair's weight. This second mechanical power (32.4 W) was 10% higher than the average of the instantaneous power. Beyond the need of a clear definition of the two phases of the propulsion cycle, this study showed that the assumption on wheelchair locomotion usually admitted on laboratory ergometers cannot be applied in field studies, and that the kinetic energy variations during the cycle propulsive phase should be considered for evaluating the subject's mechanical work and power.  相似文献   

2.
High-density surface electromyography was used to examine whether gross sarcolemmal function is impaired in m. biceps brachii after intensive eccentric elbow flexor exercise, when measured at wide range of isometric contraction levels.Root mean square (RMS), mean power frequency (MNF) and mean muscle fibre conduction velocity (CV) were calculated before and up to four days post-exercise.Maximal isometric voluntary (MVC) force decreased by 21.3 ± 5.6% two hours after exercise, and by 12.6 ± 11.1% two days post-exercise. CV and MNF decreased both during MVC (CV from 4.1 ± 0.3 m/s to 3.8 ± 0.4 m/s and MNF from 92.6 ± 10 Hz to 85.2 ± 11 Hz) and during electrically evoked maximal M-wave (CV from 4.1 ± 0.3 m/s to 3.0 ± 0.5 m/s and MNF from 97.1 ± 27.2 Hz to 78.0 ± 24.4 Hz) two hours post-exercise. Furthermore, at submaximal isometric force levels, CV and MNF decreased only at higher contraction levels (40%, 50% and 75% of MVC) two hour post-exercise.It can be concluded that intensive exercise can temporarily impair gross sarcolemmal function. In addition, since this only occurred at high force levels, based on Henneman’s size principle, it seems that higher threshold motor units were predominantly affected.  相似文献   

3.
The purpose of this study was to determine the changes that occur in tendinous tissue properties during the early phase of tetanic summation in the in vivo human tibialis anterior muscle (TA). The torque response and tendinous tissue elongation following single stimuli, two-pulse trains, and three-pulse trains were recorded in the TA during isometric contractions. The elongation, compliance, and lengthening velocity of tendinous tissue were determined by real-time ultrasonography. The contribution of the response to the second stimulation (C2) was obtained by subtracting the response to the single stimulation (C1) from the response of doublet. The third contribution (C3) was obtained by subtracting the response to the doublet from that of the triplet. C2 (7.8±0.5 Nm) and C3 (7.3±0.6 Nm) had torque responses significantly higher than C1 (3.6±0.7 Nm). In contrast, the elongations of tendinous tissue for C2 (2.8±0.4 mm) and C3 (1.7±0.2 mm) were significantly lower than for C1 (4.9±0.3 mm), indicating that the summation pattern of tendinous tissue elongation is different from the summation pattern of torque response. In addition, this showed considerable difference both between C1 (0.12±0.01 mm/N; 83±4.6 mm/s) and C2 (0.03±0.005 mm/N; 50±6.3 mm/s) and between C1 and C3 (0.02±0.002 mm/N; 39±6.4 mm/s) in the compliance and lengthening velocity of tendinous tissue. These results suggest that changes in tendinous tissue properties between first and second contraction are related to different summation patterns of force and tendinous tissue elongation during early phase of tetanic summation.  相似文献   

4.
Rate of force development (RFD) plays an important role when performing rapid and forceful movements. Cold-induced afferent input with transient skin cooling (SC) can modulate neural drive. However, the relationship between RFD and SC is unknown. The purpose of this study was to investigate whether SC increases RFD during isometric knee extension. Fifteen young healthy men (25 ± 8 yrs old) contracted their quadriceps muscle as fast and forcefully as possible with or without SC. Skin cooling was administered to the front of the thigh. Torque and electromyographic activity were measured simultaneously. Peak torque was not affected by SC. Skin cooling induced a significant increase in RFD at the phase 0–30 and 0–50 ms. The root mean square of the electromyography of vastus medialis, rectus femoris and vastus lateralis at the phases 0–30–50–100 ms increased significantly or tended to increase with SC. These results suggest that SC may increase neural drive and improve RFD in the very early phases of contraction.  相似文献   

5.
IntroductionWe evaluated the impact of 4DCT artifacts on carbon-ion pencil beam scanning dose distributions in lung and liver treatment.Methods & materials4DCT was performed in 20 liver and lung patients using area-detector CT (original 4DCT). 4DCT acquisition by multi-detector row CT was simulated using original 4DCT by selecting other phases randomly (plus/minus 20% phases). Since tumor position can move over the respiratory range in original 4DCT, mid-exhalation was set as reference phase. Total prescribed dose of 60 Gy (RBE) was delivered to the clinical target volume (CTV). Reference dose distribution was calculated with the original CT, and actual dose distributions were calculated with treatment planning parameters optimized using the simulated CT (simulated dose). Dose distribution was calculated by substituting these parameters into the original CT.ResultsFor liver cases, CTV-D95 and CTV-Dmin values for the reference dose were 97.6 ± 0.5% and 89.8 ± 0.6% of prescribed dose, respectively. Values for the simulated dose were significantly degraded, to 88.6 ± 14.0% and 46.3 ± 26.7%, respectively. Dose assessment results for lung cases were 84.8 ± 12.8% and 58.0 ± 24.5% for the simulated dose, showing significant degradation over the reference dose of 95.1 ± 1.5% and 87.0 ± 2.2%, respectively.Conclusions4DCT image quality should be closely checked to minimize degradation of dose conformation due to 4DCT artifacts. Medical staff should pay particular attention to checking the quality of 4DCT images as a function of respiratory phase, because it is difficult to recognize 4DCT artifact on a single phase in some cases  相似文献   

6.
Falling on the outstretched hands (FOOSH), a protective mechanism to arrest the body and avoid injury, requires upper limb and trunk motor control for effective body descent. The purpose of this study was to investigate muscle activity during three phases of an unexpected FOOSH in healthy older and younger women. Twenty young (mean age 22.9 yrs, SD ± 3.7) and 20 older females (mean age 68.1 yrs, SD ± 5.0) performed five trials of unexpected FOOSHs. Surface electromyography (EMG) determined muscle activations for left shoulder girdle, elbow and abdominal muscles during an unexpected FOOSH. Root mean squared EMG data were calculated during three phases: (1) baseline (BL; 500 ms prior to release), (2) the preparatory phase (PRE; time between release and impact) (mean 257 ± 37 ms) and post-impact (POST; 200 ms after impact). A mixed MANOVA determined differences between phases and age groups. There was a significant multivariate interaction effect of age and time phase on muscle activity (p = 0.001). Younger women had significantly higher internal oblique/transversus abdominus activity during PRE (p = 0.006) as well as variations in muscle activity of shoulder girdle and elbow muscles. The age differences observed may lead to poorer preliminary trunk activation and greater arm bracing in older women, potentially increasing risk of fallrelated injury.  相似文献   

7.
Surface myoelectric signal changes occurring during sustained isometric contractions have been extensively studied with quantitative surface electromyography (sEMG) and are described by means of some sEMG global variables in time and frequency domain (such as the median power spectral frequency). Recently, the possibility of studying local muscle O2 saturation during exercise using non-invasive methods has been enhanced thanks to the use of near-infrared spectroscopy (NIRS). The purpose of this work was to combine NIRS and sEMG techniques to analyze the relationship between modifications of sEMG parameters and the underlying metabolic status of the exercising biceps brachii muscle. This relationship was tested under different isometric contraction modalities, namely static (ST) at 20, 40, 60 and 80%MVC and sinusoidal (SIN) at 40 ± 20 and 60 ± 20%MVC. Results clearly indicated the presence of an initial fast phase of muscle O2 desaturation followed by a slow phase, regardless of the contraction modality. Moreover, the initial rate of muscle O2 desaturation was related to the level of force output (R = 0.92), but it was independent on the contraction modality (p < 0.05). Similarly, changes in sEMG parameters were related to force level (Conduction Velocity-CV vs. Force: R = 0.87; sEMG Median Frequency-MDF vs. Force: R = 0.86). The high correlation found between CV-MDF and Tissue Oxygenation Index (TOI) slope (R = 0.73 and 0.72, respectively) suggests a strong relationship between NIRS and sEMG data. This study indicates that muscle O2 demand during isometric contractions from low to high force levels is influenced by the type of active motor units and not from the type of isometric exercise modality.  相似文献   

8.
The purpose of the present study was to examine the influence of activation capabilities on the electromyography (EMGRMS) and mechanomyography amplitude (MMGRMS)–force relationships of the vastus lateralis (VL) and rectus femoris (RF). Thirteen men (mean ± SD; age = 22 ± 3 year) performed nine submaximal contractions (10–90% maximal voluntary contraction [MVC]) with the interpolated twitch technique performed during a separate contraction at 90% MVC to calculate percent voluntary activation (%VA). Nine participants with >90% VA were categorized into the high-activated group with the remaining categorized into the moderate-activated group. Slopes (b terms) were calculated from the log-transformed EMGRMS and MMGRMS–force relationships. The b terms (collapsed across the VL and RF) for the EMGRMS–force relationships were greater for the high- (1.29 ± 0.31) than the moderate-activated (1.10 ± 0.20) group. In contrast, there were no differences in the b terms for the MMGRMS–force relationships between the high- and moderate-activated groups. For the EMGRMS and MMGRMS–force relationships, the b terms were greater for the RF (1.38 ± 0.30, 0.81 ± 0.20) than the VL (1.08 ± 0.19, 0.60 ± 0.13) collapsed across groups. The b terms from the EMGRMS–force relationships, but not the MMGRMS–force relationships, reflected differences in %VA.  相似文献   

9.
Kinesthetic illusions by visual stimulation (KiNVIS) enhances corticomotor excitability and activates motor association areas. The purpose of this study was to investigate the effect of KiNVIS induction on muscular output function after short-term immobilization. Thirty subjects were assigned to 3 groups: an immobilization group, with the left hand immobilized for 12 h (immobilization period); an illusion group, with the left hand immobilized and additionally subjected to KiNVIS of the immobilized part during the immobilization period; and a control group with no manipulation. The maximum voluntary contraction (MVC), fluctuation of force (force fluctuation) during a force modulation task, and twitch force were measured both before (pre-test) and after (post-test) the immobilization period. Data were analyzed by performing two-way (TIME × GROUP) repeated measures ANOVA. The MVC decreased in the immobilization group only (pre-test; 37.8 ± 6.1 N, post-test; 32.8 ± 6.9 N, p < 0.0005) after the immobilization period. The force fluctuation increased only in the immobilization group (pre-test; 2.19 ± 0.54%, post-test; 2.78 ± 0.87%, p = 0.007) after the immobilization period. These results demonstrate that induction of KiNVIS prevents negative effect on MVC and force fluctuation after 12 h of immobilization.  相似文献   

10.
This study investigated changes in muscle activity when subjects are asked to maintain a constant cadence during an unloaded condition. Eleven subjects pedaled for five loaded conditions (220 W, 190 W, 160 W, 130 W, 100 W) and one unloaded condition at 80 rpm. Electromyographic (EMG) activity of six lower limb muscles, pedal forces and oxygen consumption were calculated for every condition. Muscle activity was defined by timing (EMG onset and offset) and level (integrated values of EMGrms calculated between EMG onset and EMG offset) of activation, while horizontal and vertical impulses were computed to characterize pedal forces. Muscle activity, pedal forces and oxygen consumption variables measured during the unloaded condition were compared with those extrapolated to 0 W from the loaded conditions, assuming a linear relationship. The muscle activity was changed during unloaded condition: EMG onset and/or offset of rectus femoris, biceps femoris, vastus medialis, and gluteus maximus muscles were delayed (p < 0.05); iEMGrms values of rectus femoris, biceps femoris, gastrocnemius medialis and tibialis anterior muscles were higher than those extrapolated to 0 W (p < 0.05). Vertical impulse over the extension phase was lower (p < 0.05) while backward horizontal impulse was higher (p < 0.05) during unloaded condition than those extrapolated to 0 W. Oxygen consumptions were higher during unloaded condition than extrapolated to 0W (750 ± 147 vs. 529 ± 297 mLO2.min?1; p < 0.05). Timing of activation of rectus femoris and biceps femoris was dramatically modified to optimize pedal forces and maintain a constant cadence, while systematic changes in the activation level of the bi-articular muscles induced a relative increase in metabolic expenditure when pedaling during an unloaded condition.  相似文献   

11.
Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates.Twelve experienced judokas performed sideways Martial Arts (MA) and Block (‘natural’) falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model.The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of ‘maximum impact’ and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650 ± 916 N) estimated by the final model were comparable with measured values (3698 ± 689 N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates.  相似文献   

12.
《Aquatic Botany》2005,82(3):168-180
This study quantified the prevalence of holdfast aggregation (fusion of holdfasts) for the kelp Ecklonia radiata on subtidal reefs in southwestern Australia, and tested whether morphology, age, attachment or drag were different between kelps growing alone (solitary) or in aggregates. Wave-sheltered in-shore reefs consistently had fewer aggregates than wave-exposed off-shore reefs (15–20% versus 20–30%). On average, individual thalli from aggregates were longer (97.8 cm ± 2.2 S.E. versus 88.0 cm ± 2.0 S.E.) and had smaller holdfasts (32.9 g fresh wt ± 1.7 S.E. versus 45.8 g fresh wt ± 2.9 S.E.) than solitary thalli, whereas there were no significant differences in other morphological characters, including total biomass (805.1 g fresh wt ± 38.7 S.E. versus 831.5 g fresh wt ± 38.5 S.E.), stipe length (7.93 cm ± 0.47 S.E. versus 7.65 cm ± 0.40 S.E.) and stipe diameter (12.6 mm ± 0.23 S.E. versus 13.0 mm ± 0.25 S.E.). There was no difference in age between solitary (2.7–3.0 years) and aggregated (2.4–2.8 years) individuals. While the attachment force of whole aggregates (256.5 N ± 21.6 S.E.) was found to be significantly larger than attachment force for solitary individuals (162.5 N ± 12.9 S.E.), attachment areas were also larger for aggregates (90.7 cm2 ± 5.40 S.E. versus 64.3 cm2 ± 5.54 S.E.) and consequently there were no differences in attachment strength between aggregates (2.92 N cm−2 ± 0.26 S.E.) and solitary thalli (2.71 N cm−2 ± 0.22 S.E.). Aggregates had significantly smaller (17%) roughness factors (equivalent to drag coefficients) than solitary individuals and a negative relationship (r = −0.68) between roughness factors and biomass suggested that this was related to the scope for compaction and rearrangement of the thalli. Further, there was no relationship between roughness factors of solitary individuals and the aggregates they produced when combined, suggesting that roughness factors are not additive or multiplicative. The spatial distribution of holdfast aggregates, the morphological differences between solitary and aggregated individuals as well as their attachment and drag characteristics were all consistent with aggregation reducing the rate of fatal kelp dislodgment.  相似文献   

13.
The purpose of this study was to investigate the effects of whole body cryotherapy (WBC) on a range of thermoregulatory measures. We also sought to examine the influence of sex and body composition. A convenience sample of 18 healthy participants (10 males and 8 females) (27±6 yr) volunteered for this study. Temperature (core, tympanic, skin and mean body), heart rate, blood pressure, and thermal comfort and sensation were recorded pre- and post- (immediately and every 5 min until 35 min post) exposure to a single bout of WBC (30 s at −60 °C, 150 s at 110 °C). Anthropometric data (height, weight, body surface area, body mass index, fat mass and fat free mass) were also recorded. No significant differences in temperature (core, tympanic, skin and mean body), heart rate, blood pressure, or thermal comfort / sensation were observed between male and females at baseline. Immediately post WBC mean body (male:31.9±0.8 °C; female:31.0±0.9 °C; ∆ mean body temperature:0.9±0.1 °C; P≤0.05, d=0.64) and mean skin (male:22.1±2.2 °C; female:19.6±2.8 °C; ∆ mean skin temperature:−2.5±0.6 °C; d=0.99, P≤0.05) temperature was significantly different between sexes. Sex differences were also observed in regional skin temperature (male thigh, 20.8±1.1 °C; female thigh, 16.7±1.1 °C, ∆ mean thigh skin temperature:−4.1 °C; d=3.72; male calf, 20.5±1.1 °C; female calf, 18.2±1 °C, ∆ mean calf skin temperature:−2.3±0.1 °C; d=3.61; male arm, 21.7±1 °C; female arm, 19±0.4 °C, ∆ mean arm skin temperature: −2.7±0.3 °C; d=3.54; P≤0.05). Mean arterial pressure was significantly different over time (P≤0.001) and between sexes (male 0 mins:94±10 mmHg; female 0 mins:85±7 mmHg; male 35 mins:88±7 mmHg; female 35 mins:80±6 mmHg; P≤0.05). Combined data set indicated a strong negative relationship between skin temperature and body fat percentage 35 min’ post WBC (r=−0.749, P≤0.001) and for core temperature and body mass index in males only (r=0.726, P≤0.05) immediately after WBC. There were no significant differences between sexes in any other variables (heart rate, tympanic and perceptual variables). We observed sex differences in mean skin and mean body temperature following exposure to whole body cryotherapy. In an attempt to optimise treatment, these differences should be taken into account if whole body cryotherapy is prescribed.  相似文献   

14.
The purposes of this study were threefold: (1) to compare the power output related patterns of absolute and normalized MMG amplitude and MPF responses for proximal and distal accelerometer placements on the vastus lateralis (VL) muscle during incremental cycle ergometry; (2) to examine the influence of accelerometer placements on mean absolute MMG amplitude and MPF values; and (3) to determine the effects of normalization on mean MMG amplitude and MPF values from proximal and distal accelerometer placements. Fifteen adults (10 men and 5 women; mean ± SD age = 23.9 ± 3.1 years) performed incremental cycle ergometry tests to exhaustion. Two accelerometers were placed proximal and distal on the VL muscle. Paired t-tests indicated that absolute MMG amplitude values for the proximal accelerometer were greater (p < 0.05) than the distal accelerometer at all power outputs. The normalized MMG amplitude also had greater values for the proximal accelerometer at all power outputs, except 50 W. There were no differences, however, between proximal and distal accelerometers for absolute MMG MPF, except at 75 W, and normalization eliminated this difference. Twenty-seven percent of the subjects exhibited different power output related patterns of responses between accelerometer placements for MMG amplitude and 47% exhibited different patterns for MPF. These findings indicated that normalization did not eliminate the influence of accelerometer placement on MMG amplitude and highlighted the importance of standardizing accelerometer placements to compare MMG values during cycle ergometry.  相似文献   

15.
In order to decrease the amount of time that it takes the catcher to throw the ball, a catcher may chose to throw from the knees. Upper extremity kinematics may play a significant role in the kinetics about the elbow observed in catchers throwing from the knees. If relationships between kinematics and kinetics exist then the development of training and coaching instruction may help in reduced upper extremity injury risk. Twenty-two baseball and softball catchers (14.36 ± 3.86 years; 165.11 ± 17.54 cm; 65.67 ± 20.60 kg) volunteered. The catchers exhibited a less trunk rotation (5.6 ± 16.2°), greater elbow flexion (87.9 ± 21.4°) and decreased humeral elevation (71.1 ± 12.3°) at the event of maximum shoulder external rotation as compared to what has previously reported in catchers. These variables are important, as they have previously been established as potential injury risk factors in pitchers, however it is not yet clear the role these variables play in catchers’ risk of injury. A positive relationship between elbow varus torque during the deceleration phase and elbow flexion at MIR was observed (r = 0.609; p = 0.003). Throwing from the knees reduces a catcher’s ability to utilize the proximal kinetic chain and this may help to explain why their kinematics and kinetics differ from what has previously been presented in the literature.  相似文献   

16.
The purpose of this study was to examine the effects of age on active leg stiffness adjustment, electromyogram (EMG) activities and energy stored during eccentric and concentric phases in performing a maximal functional task involving stretch-shorten cycle. Ten young (24.3 ± 2 years) and 10 old (68.6 ± 5 years) healthy male subjects were filmed during maximal performance of counter movement jump (CMJ) and squat jump (SJ) on force plate. Integrated EMG (IEMG), ground reaction force (GRF), active leg stiffness, energy stored/returned and active work done by the muscles were compared between two groups on eccentric (ECC) and concentric (CON) phases of CMJ. The GRF, leg stiffness and energy stored in ECC and GRF, IEMG, energy returned and active work in CON were less in the elderly (p < 0.05). These results demonstrate that the neuromuscular function of adjusting active stiffness, storing elastic energy and optimizing the performance may decrease with age during CMJ.  相似文献   

17.
This study sought to identify any differences in peak muscle activation (EMGPEAK) or average rectified variable muscle activation (EMGARV) during supinated grip, pronated grip, neutral grip and rope pull-up exercises. Nineteen strength trained males (24.9 ± 5 y; 1.78 ± 0.74 m; 81.3 ± 11.3 kg; 22.7 ± 2.5 kg m−2) volunteered to participate in the study. Surface electromyography (EMG) was collected from eight shoulder-arm-forearm complex muscles. All muscle activation was expressed as a percentage of maximum voluntary isometric contraction (%MVIC). Over a full repetition, the pronated grip resulted in significantly greater EMGPEAK (60.1 ± 22.5 vs. 37.1 ± 13.1%MVIC; P = 0.004; Effect Size [ES; Cohen’s d] = 1.19) and EMGARV (48.0 ± 21.2 vs. 27.4 ± 10.7%MVIC; P = 0.001; ES = 1.29) of the middle trapezius when compared to the neutral grip pull-up. The concentric phases of each pull-up variation resulted in significantly greater EMGARV of the brachioradialis, biceps brachii, and pectoralis major in comparison to the eccentric phases (P = <0.01). Results indicate that EMGPEAK and EMGARV of the shoulder-arm-forearm complex during complete repetitions of pull-up variants are similar despite varying hand orientations; however, differences exist between concentric and eccentric phases of each pull-up.  相似文献   

18.
Dinophysis spp. produce diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins. The extent to which the dinoflagellate cells retain their toxicity in stationary phase, a period when cells are most toxic, and their transition into cell death is not known. Here we present results on the production, recycling, retention, and release of toxins from a monoculture of Dinophysis acuminata during these two important stages. Once stationary phase was reached, cultures were divided between light and dark treatments to identify if light influenced toxin dynamics. Light was required for long-term cell maintenance (>2 months) of D. acuminata in the absence of prey, however, in the dark, cells in stationary phase survived on reserves alone for four weeks before beginning to decline. Cells maintained relatively constant levels of intracellular OA (0.39 ± 0.03 pg/cell, 0.44 ± 0.05 pg/cell), DTX1 (0.45 ± 0.09 pg/cell, 0.64 ± 0.10 pg/cell) and PTX2 (10.4 ± 1.4 pg/cell, 11.0 ± 1.9 pg/cell) in the dark and light treatments, respectively, throughout stationary phase and into culture decline. Toxin production was only apparent during late exponential and early stationary growth when cells were actively dividing. In general, the concentration of dissolved (extracellular) toxin in the medium significantly increased upon culture aging and decline; cells did not appear to be actively or passively releasing toxin during stationary phase, but rather extracellular release was likely a result of cell death. Light availability did not have an apparent effect on toxin production, quotas, or intracellular vs. extracellular distribution. Together these results suggest that a bloom of D. acuminata would retain its cellular toxicity or potency as long as the population is viable, and that cells under conditions of low light (e.g., at the boundary or below euphotic zone) and/or minimal prey could maintain toxicity for extended periods.  相似文献   

19.
《IRBM》2014,35(1):46-52
BackgroundQuantified gait analysis is a rising technology used increasingly to assess motor disorders. Normal reference data are required in order to evaluate patients, but there are no reference data available for the Tunisian healthy population.AimTo assess the features of normal Tunisian gait pattern, and examine the intrinsic reliability of spatio-temporal, kinematic and kinetic parameters within a new specific reference database.MethodsEighteen healthy active-young adults (age: 23.30 ± 2.54 years, height: 1.78 ± 0.04 m and, weight: 70.00 ± 4.80 kg) have participated to five trials of step gait where the dominant lower limb were recorded. Two over the five trials were randomly selected to be further analyzed. Twenty-three spatio-temporal, kinematic and kinetic parameters determined from 3-dimensional gait analysis. The intrinsic reliability was examined for each variable and our results were compared with those available in the literature.ResultsTwelve over 23 parameters have an excellent intrinsic reliability (P > 0.05, ICC > 0.9 and SEM < 5% of the grand mean). There are similarities with other studies (P < 0.05) but we noticed the existence of some specificity (the height of hip extension peak and the low cadence of gait) that could characterize the Tunisian population.ConclusionA specific reference database of the gait cycle has been established for healthy Tunisian active-young adults and excellent inter-trial reliability may be observed for different variables.  相似文献   

20.
The behavioral decisions of wild animals are influenced by the often conflicting needs to both feed efficiently and to avoid predators. Information regarding how lagomorphs such as the mountain hare (Lepus timidus) balance these factors throughout the day-night cycle is largely lacking despite its importance to management.To better understand the type and proportion of various behaviors the mountain hare engages in over the course of a 24-hour period, I monitored the behavior of six mountain hares under controlled conditions from early to mid-winter. The mountain hares spend the majority of their time resting (mean ± standard deviation: 32.4 ± 14.4%) and under canopy (22.4 ± 18.7%), and a smaller proportion of their time feeding (16.2 ± 6.1%). Activity peaks over the course of the 24-hour cycle reflect natural behavior patterns that emphasize the reduction of predation risk. The sunrise phase is characterized by the search for a suitable resting place; the day phase by resting and hiding. The sunset phase is characterized by the search for food, and the night phase by an equal mix of food intake and movement through the home range. These results can help land managers predict how factors such as increasing tourist activity (perceived by the hare as a safety threat) will influence the behavior of free-ranging mountain hares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号