首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles in the innate immunity. In this study, a novel C-type lectin gene from scallop Argopecten irradians (designated as AiCTL-6) was cloned by rapid amplification of cDNA ends (RACE) approach based on expression sequence tag (EST) analysis. The full-length cDNA of AiCTL-6 was 1080 bp. The open reading frame encoded a polypeptide of 307 amino acids, including a signal sequence and a C-type lectin-like domain (CTLD) of 150 amino acid residues longer than any usual CTLD. It contained six conserved cysteine residues involved in the formation of three internal disulfide bridges and an EPD (Glu269-Pro270-Asp271) motif at the Ca2+-binding site 2. The deduced amino acid sequence of AiCTL-6 showed high similarity to members of C-type lectin superfamily. By fluorescent quantitative real-time PCR, AiCTL-6 mRNA was found mainly in hepatopancreas and gill, and marginally expressed in other tissues. After the scallops were challenged by Listonella anguillarum for 6 h, the mRNA expression of AiCTL-6 was up-regulated significantly to 7.2-fold compared to the blank group. While at 9 h post Micrococcus luteus challenge, its expression level was 60.1 times higher than that of the blank group. The functional activity of AiCTL-6 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiCTL-6 could agglutinate Gram-negative bacteria Ecoli TOP10F′, Gram-positive bacteria M. luteus and Staphylococcus aureus. These results collectively suggested that AiCTL-6, as a novel member of C-type lectin family, contributed to the host defense mechanisms against invading microorganism in A. irradians.  相似文献   

3.
4.
Yang J  Wang L  Zhang H  Qiu L  Wang H  Song L 《PloS one》2011,6(2):e17089

Background

C-type lectins are a superfamily of Ca2+ dependent carbohydrate-recognition proteins that play significant diverse roles in nonself-recognition and clearance of invaders. Though they are well characterized in vertebrates, the study of the potential function and mechanism of C-type lectins in invertebrate immunity is still in its infancy.

Methodology

A C-type lectin (CfLec-1) from scallop Chlamys farreri, a dominant cultured mollusk species in China, was selected to investigate its mRNA expression, localization and the possible functions in innate immunity in the present study. After scallop was stimulated by three typical PAMPs, the mRNA expression of CfLec-1 in hemocytes was poles apart. It was significantly up-regulated (p<0.01) after scallops were stimulated by LPS or β-glucan, but significantly down-regulated (p<0.01) after PGN stimulation. The binding ability of recombinant CfLec-1 (designated as rCfLec-1) towards eight PAMPs was investigated subsequently by PAMPs microarray, which revealed rCfLec-1 could bind LPS, PGN and mannan in vitro, indicating CfLec-1 served as a PRR involved in the pathogen recognition. Immunofluorescence assay with polyclonal antibody specific for CfLec-1 revealed that CfLec-1 was mainly located in the mantle and gill of the scallop. CfLec-1 could bind to the surface of scallop hemocytes and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-1 antibody. Meanwhile, rCfLec-1 could also enhance the phagocytic activity of scallop hemocytes against Escherichia coli.

Conclusions

The results clearly suggested that CfLec-1 in C. farreri not only served as a PRR involved in the PAMPs recognition, but also functioned as an opsonin participating in the clearance of invaders. It is therefore suspected that CfLec-1 could be an attachment-molecule to nonself-agents acting as an alternative to immunoglobulin in vertebrates.  相似文献   

5.
C-type lectins are Ca(2+)-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a 5'-terminal untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7- and 4.9-fold at 6h after injury and 8h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury healing and the immune response in A. irradians.  相似文献   

6.
Galectins are a family of β-galactoside-binding lectins which play crucial roles in innate immunity of vertebrates and invertebrates. In the present study, the cDNA of a galectin with multiple carbohydrate-recognition domains (CRDs) was cloned from bay scallop Argopectens irradians (designated AiGal1) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of AiGal1 was of 2235 nucleotides, encoding a polypeptide of 549 amino acids. SMART program analysis revealed that AiGal1 contained four galectin CRDs, and all the CRDs contained the two consensus motifs essential for ligand-binding. Quantitative real-time PCR was employed to investigate the tissue distribution of AiGal1 mRNA and temporal expression in haemocytes of scallops challenged with Vibrio anguillarum, Micrococcus luteus and Pichia pastoris. The AiGal1 mRNA could be detected in all tested tissues with the highest expression level in hepatopancreas. After challenged by V. anguillarum and M. luteus, the expression level of AiGal1 mRNA was both up-regulated and reached the maximum level at 9 h (1.52 fold, P < 0.05) and 18 h (2.89 fold, P < 0.01) post challenge, respectively. However, there was no significant difference in the mRNA expression of AiGal1 in haemocytes after P. pastoris challenge (P > 0.05). These results collectively indicated that AiGal1 was a new member of the galectin family and involved in the immune responses against bacterial infection.  相似文献   

7.
8.
9.
10.
C-type lectin and galectin are two types of animal carbohydrate-binding proteins which serve as pathogen recognition molecules and play crucial roles in the innate immunity of invertebrates. In the present study, a C-type lectin (designated as SgCTL-1) and galectin (designated as SgGal-1) were identified from mollusk Solen grandis, and their expression patterns, both in tissues and toward three pathogen-associated molecular patterns (PAMPs) stimulation were characterized. The full-length cDNA of SgCTL-1 and SgGal-1 was 1280 and 1466 bp, containing an open reading frame (ORF) of 519 and 1218 bp, respectively. Their deduced amino acid sequences showed high similarity to other members of C-type lectin and galectin superfamily, respectively. SgCTL-1 encoded a single carbohydrate-recognition domain (CRD), and the motif of Ca(2+)-binding site 2 was EPN (Glu(135)-Pro(136)-Asn(137)). While SgGal-1 encoded two CRDs, and the amino acid residues constituted the carbohydrate-binding motifs were well conserved in CRD1 but partially conserved in CRD2. Although SgCTL-1 and SgGal-1 exhibited different tissue expression pattern, they were both constitutively expressed in all tested tissues, including hemocytes, gonad, mantle, muscle, gill and hepatopancreas, and they were both highly expressed in hepatopancreas and gill. Furthermore, the mRNA expression of two lectins in hemocytes was significantly (P < 0.01) up-regulated with different levels after S. grandis were stimulated by lipopolysaccharide (LPS), peptidoglycan (PGN) or β-1,3-glucan. Our results suggested that SgCTL-1 and SgGal-1 from razor clam were two novel members of animal lectins, and they might function as pattern recognition receptors (PRRs) taking part in the process of pathogen recognition.  相似文献   

11.
C型凝集素作为模式识别分子可以识别部分脂多糖(LPS),进而参与昆虫细胞的防御反应。本文通过RT-PCR和3′/5′RACE技术从亚洲玉米螟Ostriniafurnacalis 5龄幼虫血细胞中克隆得到免疫凝集素基因(OfIML)。OfIMLmRNA全长为1241 bp,其中开放读码框(ORF)为924 bp,编码307个氨基酸(aa),分子量约为34.65 ku。与其它昆虫的C型凝集素比对分析结果显示,OfIML属于鳞翅目免疫凝集素,并且含有一个独特的结构特征,即一前一后2个糖识别域,氨基末端(CRD1,aa#1-135)和羧基末端(CRD2,aa#136-287)。RT-PCR检测OfIML在幼虫组织中的分布结果表明,其在血细胞、表皮、脂肪体、中肠、马氏管和气管中都有表达。OfIML GenBank登录号为ABZ81710。OfIML是一种昆虫免疫凝集素,含有2个糖识别域,根据其分子结构及在组织分布中的结果显示可能在亚洲玉米螟的免疫反应中起重要作用。  相似文献   

12.
In invertebrates, C-type lectins play crucial roles in innate immunity responses by mediating the recognition of host cells to pathogens and clearing microinvaders, which interact with carbohydrates and function as pattern recognition receptors (PRRs). A novel C-type lectin gene (LvLec) cDNA was cloned from hemocytes of Litopenaeus vannamei by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of LvLec was of 618 bp, consisting of a 5′-terminal untranslated region (UTR) of 60 bp and a 3′-UTR of 87 bp with a poly (A) tail. The deduced amino acid sequence of LvLec possessed all conserved features critical for the fundamental structure, such as the four cysteine residues (Cys53, Cys128, Cys144, Cys152) involved in the formation of disulfides bridges and the potential Ca2+/carbohydrate-binding sites. The high similarity and the close phylogenetic relationship of LvLec shared with C-type lectins from vertebrates and invertebrates. The structural features of LvLec indicated that it was an invertebrate counterpart of the C-type lectin family. The cDNA fragment encoding the mature peptide of LvLec was recombined and expressed in Escherichia coli BL21(DE3)-pLysS. The recombinant protein (rLvLec) could agglutinate bacteria E. coli JM109 depending on Ca2+, and the agglutination could be inhibited by mannose and EDTA. These results indicated that LvLec was a new member of C-type lectin family and involved in the immune defence response to Gram negative bacteria in Litopenaeus vannamei.  相似文献   

13.
14.
15.
Lectins are a family of carbohydrate-recognition proteins which play crucial roles in innate immunity. In this study, a new lectin (CfLec-2) gene was cloned from Chlamys farreri by EST and RACE approaches. The full-length cDNA of CfLec-2 was composed of 708bp, encoding a typical long form carbohydrate-recognition domain of 130 residues. The deduced amino acid sequence showed high similarity to Brevican in Homo sapiens, C-type lectin-1 and lectin-2 in Anguilla japonica. The cDNA fragment encoding the mature peptide of CfLec-2 was recombined into plasmid pET-32a (+) and expressed in Escherichia coli Rosseta-Gami (DE3). The recombinant CfLec-2 (rCfLec-2) protein exhibited aggregative activity toward Staphylococcus haemolyticus, and the agglutination could be inhibited by d-mannose but not EDTA or d-galactose, indicating that CfLec-2 was a Ca2+ independent lectin. Moreover, rCfLec-2 could suppress the growth of E. coli TOP10F'. These results suggested that CfLec-2 was perhaps involved in the recognition and clearance of bacterial pathogens in scallop.  相似文献   

16.
AM Seufi  FH Galal  EE Hafez 《PloS one》2012,7(8):e42795

Background

Various proteins that display carbohydrate-binding activity in a Ca2+-dependent manner are classified into the C-type lectin family. They have one or two C-type carbohydrate-recognition domains (CRDs) composed of 110–130 amino acid residues in common. C-type lectins mediate cell adhesion, non-self recognition, and immuno-protection processes in immune responses and thus play significant roles in clearance of invaders, either as cell surface receptors for microbial carbohydrates or as soluble proteins existing in tissue fluids. The lectin of Spodoptera littoralis is still uncharacterized.

Methodology

A single orf encoding a deduced polypeptide consisting of an 18-residue signal peptide and a 291-residue mature peptide, termed SpliLec, was isolated from the haemolymph of the cotton leafworm, S. littoralis, after bacterial challenge using RACE-PCR. Sequence analyses of the data revealed that SpliLec consists of two CRDs. Short-form CRD1 and long-form CRD2 are stabilized by two and three highly conserved disulfide bonds, respectively. SpliLec shares homology with some dipteran lectins suggesting possible common ancestor. The purified SpliLec exhibited a 140-kDa molecular mass with a subunit molecular mass of 35 kDa. The hemagglutination assays of the SpliLec confirmed a thermally stable, multisugar-binding C-type lectin that binds different erythrocytes. The purified SpliLec agglutinated microorganisms and exhibited comparable antimicrobial activity against gram (+) and gram (−) bacteria too.

Conclusions

Our results suggested an important role of the SpliLec gene in cell adhesion and non-self recognition. It may cooperate with other AMPs in clearance of invaders of Spodoptera littoralis.  相似文献   

17.
18.
In this paper, we firstly reported a C-type lectin cDNA clone of 1029 bps from the larvae of A. Pernyi (Ap-CTL) using PCR and RACE techniques. The full-length cDNA contains an open reading frame encoding 308 amino acid residues which has two different carbohydrate-recognition domains (CRDs) arranged in tandem. To investigate the biological activities in the innate immunity, recombinant Ap-CTL was expressed in E. coli with a 6-histidine at the amino-terminus (Ap-rCTL). Besides acted as a broad-spectrum recognition protein binding to a wide range of PAMPs and microorganisms, Ap-rCTL also had the ability to recognize and trigger the agglutination of bacteria and fungi. In the proPO activation assay, Ap-rCTL specifically restored the PO activity of hemolymph blocked by anti-Ap-rCTL antibody in the presence of different PAMPs or microorganisms. In summary, Ap-rCTL plays an important role in insect innate immunity as an pattern recognition protein. [BMB Reports 2013; 46(7): 358-363]  相似文献   

19.
C-type lectins play crucial roles in innate immunity to recognize and eliminate pathogens efficiently. In the present study, two C-type lectins from shrimp Litopenaeus vannamei (designated as LvLectin-1 and LvLectin-2) were identified, and their expression patterns, both in tissues and toward pathogen stimulation, were then characterized. The full-length cDNA of LvLectin-1 and LvLectin-2 was 567 and 625 bp, containing an open reading frame (ORF) of 471 and 489 bp, respectively, and deduced amino acid sequences showed high similarity to other members of C-type lectin superfamily. Both two C-type lectins encoded a single carbohydrate-recognition domain (CRD). The motif of Ca2+ binding site 2 in CRD, which determined carbohydrate-binding specificity, was QPN (Gln122-Pro123-Asn124) in LvLectin-1, but QPD (Gln128-Pro129-Asp130) in LvLectin-2. Two C-type lectins exhibited similar tissue expression pattern, for their mRNA were both constitutively expressed in all tested tissues, including hepatopancreas, muscle, gill, hemocytes, gonad and heart, furthermore they were both mostly expressed in hepatopancreas, though the expression level of LvLectin-2 was much higher than LvLectin-1. The expression level of two C-type lectins mRNA in hemocytes varied greatly after the challenge of Listonella anguillarum or WSSV. After L. anguillarum challenge, the expression of both C-type lectins were significantly (P < 0.01) up-regulated compared with blank group, and LvLectin-1 exhibited higher level than LvLectin-2; while after the stimulation of WSSV, the expression of LvLectin-2 was significantly up-regulated at 6 h (P < 0.01) and 12 h (P < 0.05), but the expression level of LvLectin-1 down-regulated significantly (P < 0.01) to 0.4-fold at 6 and 12 h post-stimulation. The results indicated that the two C-type lectins might be involved in immune response toward pathogen infection, and they might perform different recognition specificity toward bacteria or virus.  相似文献   

20.
The family of fibrinogen-related proteins (FREPs) is a group of proteins with fibrinogen-like domains. Many members of this family play important roles as pattern recognition receptors in innate immune responses. The cDNA of bay scallop Argopecten irradians FREP (designated as AiFREP) was cloned by rapid amplification of cDNA ends (RACE) method based on the expressed sequence tag (EST). The full-length cDNA of AiFREP was of 990 bp. The open reading frame encoded a polypeptide of 251 amino acids, including a signal sequence and a 213 amino acids fibrinogen-like domain. The fibrinogen-like domain of AiFREP was highly similar to those of mammalian ficolins and other FREPs. The temporal expression of AiFREP mRNA in hemolymph was examined by fluorescent quantitative real-time PCR. The mRNA level of scallops challenged by Listonella anguillarum was significantly up-regulated, peaked to 9.39-fold at 9 h after stimulation, then dropped back to 4.37-fold at 12 h, while there was no significant change in the Micrococcus luteus challenged group in all periods of treatment. The function of AiFREP was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta gami (DE3). The recombinant AiFREP (rAiFREP) agglutinated chicken erythrocytes and human A, B, O-type erythrocytes. The agglutinating activities were calcium-dependent and could be inhibited by acetyl group-containing carbohydrates. rAiFREP also agglutinated Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria M. luteus in the presence of calcium ions. These results collectively suggested that AiFREP functions as a pattern recognition receptor in the immune response of bay scallop and contributed to nonself recognition in invertebrates, which would also provide clues for elucidating the evolution of the lectin pathway of the complement system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号