首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the tilapia studies are focused on its osmoregulatory mechanism. Meanwhile, less information is available about its innate immune response on fish faced with hyperosmolality. In the present study, in vivo analyses were carried out to investigate the innate immune response of Oreochromis mossambicus, transferred from freshwater to 25 ppt seawater (SW). In vivo, lysozyme activities of plasma and head kidney (HK) were increased at 1h and at 24h after transfer to SW but decreased at 8h after SW transfer. Surprisingly, the alternative complement pathway in plasma increased 8h after SW transfer. The phagocytic capacity of spleen and HK immune cells increased modestly at 1h and at 4h, after SW transfer, but the respiratory burst activity of immune cells in both HK and spleen shows an increase in superoxide release at 8h after SW transfer. Our results reveal that the transfer of fish from conditions of hypoosmolarity to hyperosmolality significantly enhances plasma lysozyme, ACP activity, and both phagocytic and respiratory burst activity. Taken together, the results indicate that exposure of tilapia to hyperosmotic conditions has immunostimulatory effects on its cellular immune reactions (phagocytosis and respiratory burst activity) and humoral reactions (lysozyme activity and complement activity).  相似文献   

2.
In this present study, Oreochromis mossambicus tilapia were transferred to cold water at 12°C for various time intervals (1, 4, 8, 24, and 48 hr) and its innate immune response was analyzed by studying cellular and humoral parameters. In vivo, alternative complement pathway activity in blood plasma was rapidly increased at 1 hr of cold water (12°C) exposure. Lysozyme activity and cortisol levels of plasma were increased at 4 and 1 hr, respectively. Surprisingly, only plasma cortisol levels remained unchanged through 24 hr of cold water transfer. Phagocytic ability, phagocytic capacity, and respiratory burst (RB) activity of head kidney (HK) leukocytes and splenocytes showed no any significant changes. In peripheral blood leukocytes, phagocytic capacity, and RB activity were increased at 24 hr of cold water exposure. The expressions of genes involved innate immunity in splenocytes and HK leukocytes of tilapia cold water exposure were analyzed, messenger RNA (mRNA) expressions of HSP70, HSP90, and immunoglobulin M failed to change upon exposure to cold stress. Major histocompatibility complex-I and II mRNAs were significantly increased in tilapia splenocytes at 1 hr of cold water transferred. Whereas myxovirus (Mx) expression was increased in splenocytes and HK leukocytes of tilapia after 1 hr of cold water exposed. Our result reveals that the exposure of tilapia to acute cold stress condition significantly enhances plasma acid phosphatase activity and both phagocytic capacity and RB activity. Furthermore, cold stress significantly stimulates Mx gene expression in splenocytes and HK leukocytes.  相似文献   

3.
Some freshwater (FW) teleosts are capable of acclimating to seawater (SW) when challenged; however, the related energetic and physiological consequences are still unclear. This study was conducted to examine the changes in expression of gill Na(+)-K(+)-ATPase and creatine kinase (CK) in tilapia (Oreochromis mossambicus) as the acute responses to transfer from FW to SW. After 24 h in 25 ppt SW, gill Na(+)-K(+)-ATPase activities were higher than those of fish in FW. Fish in 35 ppt SW did not increase gill Na(+)-K(+)-ATPase activities until 1.5 h after transfer, and then the activities were not significantly different from those of fish in 25 ppt SW. Compared to FW, the gill CK activities in 35 ppt SW declined within 1.5 h and afterward dramatically elevated at 2 h, as in 25 ppt SW, but the levels in 35 ppt SW were lower than those in 25 ppt SW. The Western blot of muscle-type CK (MM form) was in high association with the salinity change, showing a pattern of changes similar to that in CK activity; however, levels in 35 ppt SW were higher than those in 25 ppt SW. The activity of Na(+)-K(+)-ATPase highly correlated with that of CK in fish gill after transfer from FW to SW, suggesting that phosphocreatine acts as an energy source to meet the osmoregulatory demand during acute transfer.  相似文献   

4.
This study evaluated the effect of different salinity levels on the physiology of East Java strain tilapia (Oreochromis niloticus) by measuring the serum osmolalities (SO), ion levels and hematological parameters. Their SOs above the external medium (hyper-osmotic) at 0 and 5 ppt, becoming iso-osmotic at 10 ppt and hypo-osmotic at 15 ppt. The concentrations of serum Na+, K+, Cl? and Ca2+ in fish acclimated in 0 and 5 ppt were not significantly different. The levels of Na+, Cl and Ca2+ in fish exposed to 10 and 15 ppt were higher than those in fish acclimated at 0 and 5 ppt. In contrast, the levels of K+ in fish exposed to 10 and 15 ppt were lower than those in fish exposed to 0 and 5 ppt. The levels of red blood cell, hematocrit and hemoglobin of fish exposed to salinity of 0, 5, 10 and 15 ppt were not significantly different. The levels of white blood cell increased significantly at fish exposed to 10 and 15 ppt. These data provide useful information for future reference and farming practice.  相似文献   

5.
The salinity tolerance, and hydromineral regulation capabilities of three size groups (small 110–170 g; medium 230–290 g, large 460–700 g; n=48 for each group) of 13-month-old juvenile Gulf of Mexico sturgeon were investigated. Fish (n=6 for each salinity) were transferred directly from freshwater (FW) to a series of experimental salinity treatments (0, 5, 10, 15, 20, 25, 30, and 35 parts per thousand (ppt)). Fish were also acclimated in brackish water (20 ppt) for 2 weeks and transferred to a salinity of 34 ppt. In this condition juvenile Gulf of Mexico sturgeon adapted to saltwater (SW) and maintained their hydromineral balance. FW adapted sturgeon (n=6) had an average blood hemotocrit of 28.2±0.8%, plasma osmolality of 260.7±1.6 mOsm kg−1 H2O, and plasma ion concentrations of 135.7±1.2 mM l−1 Na+, 106.9±1.9 mEq l−1 Cl, and 2.9±0.1 mM l−1 K+. In SW adapted sturgeon (n=8) blood parameters averaged 26.9±0.7% for hematocrit, 294.2±2.3 mOsm kg−1 H2O for osmolality, 152.0±1.7 mM l−1 Na+, 149.2±1.4 mEq l−1 for Cl, and 3.1±0.1 mM l−1 K+. The method of transfer (abrupt or slow acclimation) directly affected fish survival and the time they took to achieve ionic and osmotic regulation. This SW adaptation appears to be related to body size, the larger the fish the easier the adaptation process. A threshold size of about 170 g was apparent for the fish to adapt to saltwater after 2 weeks of acclimation. Chloride cells were present in both FW and SW adapted sturgeon with SW and brackish water fish having chloride cells significantly (P<0.05) more numerous (561±53 and 598±45 cells mm−2) and larger in size (41.0±3.85 and 34.2±4.49 μm2) than FW adapted sturgeon (10±1.0 cells mm−2 and 22±2.53 μm2). Few chloride cells were observed in the opercular membrane, however, none were found in the pseudobranch and spiracle.  相似文献   

6.
Effects of environmental salinity and 17α-methyltestosterone (MT) on growth and oxygen consumption were examined in the tilapia, Oreochromis mossambicus. Yolk-sac fry were collected from brood stock in fresh water (FW). After yolk-sac absorption, they were assigned randomly to one of four groups: FW, MT treatment in FW, seawater (SW) and MT treatment in SW. All treatment groups were fed to satiation three times daily. The fish reared in SW (both control and MT-treated groups) grew significantly larger than either group in FW from day 43 throughout the experiment (195 days). The fish fed with MT added to their feed grew significantly larger than their respective controls from day 85 in FW and in SW until the end of the experiment. The routine metabolic rate (RMR) was determined monthly from month 2 (day 62) to month 5 (day 155). A significant negative correlation was seen between RMR and body mass in all treatment groups. Among fish of the same age, the SW-reared tilapia had significantly lower RMRs than the FW-reared fish. The MT-treated fish in SW showed significantly lower RMRs than the SW control group at months 3–5, whereas MT treatment in FW significantly increased the RMR at month 3. Comparison of regression lines between RMR and body mass indicates that MT treatment in FW caused a significant increase in oxygen consumption at a given mass of the fish, whereas MT treatment was without effect on RMR in SW-reared fish. These results clearly indicate that SW-rearing and MT treatment accelerate growth of tilapia, and that RMR decreases as fish size increased. It is also likely that the increased RMR and growth in MT-treated tilapia in FW may be due to the metabolic actions of MT, although the reason for the absence of MT treatment in SW is unclear.  相似文献   

7.
Two CKM isoforms (CKM1 and CKM2) from the gills of tilapia (Oreochromis mossambicus) were obtained after transfer from freshwater (FW) to seawater (SW, 25 ppt). Based on the 5' and 3' RACE, the identity of CKM1 and CKM2 was determined to be 59% in the 5'-untranslated region (5'-UTR) and 41.9% in the 3'-UTR. Using Northern blot hybridization with the CKM1 and CKM2 3'-UTR probes, CKM1 and CKM2 were found to be expressed in muscle, heart and gill. The levels of these two different CK isoforms (CKM1 and CKM2) were shown to be different in FW than after acute SW transfer, showing that CKM isoforms respond to changes in salinity.  相似文献   

8.
We have investigated whether mild heat shock, and resulting Hsp70 expression, can confer cross-protection against the stress associated with transfer from freshwater (FW) to seawater (SW) in juvenile rainbow trout (Oncorhynchus mykiss). In experimental Series I, juvenile trout reared in FW were transferred from 13.5 degrees C to 25.5 degrees C in FW, held for 2 h, returned to 13.5 degrees C for 12 h, and then transferred to 32 ppt SW at 13.5 degrees C. Branchial Hsp70 increased approximately 10-fold in the heat-shocked fish relative to the control by the end of recovery and remained high 2, 8, and 24 h post-salinity transfer. However, no clear differences could be detected in blood parameters (blood hemoglobin, hematocrit, MCHC, plasma Na(+) and plasma osmolarity) or muscle water content between heat-shocked and sham-shocked fish in SW at any sampling interval (0, 2, 8, 24, 48, 120, 240 and 360 h post-SW transfer). In experimental Series II, trout acclimated to 8 degrees C were heat-shocked at 22 degrees C for 2 h, allowed to recover 18 h, and exposed to a more severe salinity transfer (either 36 or 45 ppt) than in Series I. Branchial Hsp70 levels increased approximately 6-fold in heat-shocked fish, but had declined to baseline after 120 h in SW. Plasma osmolarity and chloride increased in both groups upon transfer to 36 ppt; however, the increase was significantly less in heat-shocked fish when compared to the increase observed in sham-shocked fish at 24 h. No significant differences could be detected in branchial Na(+)/K(+)-ATPase activity or Na(+)/K(+)-ATPase alpha1a and alpha1b mRNA expression between the two groups. Our data indicate that a mild temperature shock has only modest effects on the ability of rainbow trout to resist osmotic stress during FW to SW transfer.  相似文献   

9.
The teleost gill carries out NaCl uptake in freshwater (FW) and NaCl excretion in seawater (SW). This transformation with salinity requires close regulation of ion transporter capacity and epithelial permeability. This study investigates the regulation of tight-junctional claudins during salinity acclimation in fish. We identified claudin 3- and claudin 4-like immunoreactive proteins and examined their expression and that of select ion transporters by performing Western blot in tilapia (Oreochromis mossambicus) gill during FW and SW acclimation. Transfer of FW tilapia to SW increased plasma osmolality, which was corrected after 4 days, coinciding with increased gill Na+-K+-ATPase and Na+-K+-2Cl(-) cotransporter expression. Gill claudin 3- and claudin 4-like proteins were reduced with exposure to SW. Transfer to FW increased both claudin-like proteins. Immunohistochemistry shows that claudin 3-like protein was localized deep in the FW gill filament, whereas staining was found apically in SW gill. Claudin 4-like proteins are localized predominantly in the filament outer epithelial layer, and staining appears more intense in the gill of FW versus SW fish. In addition, tilapia claudin 28a and 30 genes were characterized, and mRNA expression was found to increase during FW acclimation. These studies are the first to detect putative claudin proteins in teleosts and show their localization and regulation with salinity in gill epithelium. The data indicate that claudins may be important in permeability changes associated with salinity acclimation and possibly the formation of deeper tight junctions in FW gill. This may reduce ion permeability, which is a critical facet of FW osmoregulation.  相似文献   

10.
The present experiment was conducted to examine if freshwater (FW) oxygen and carbon dioxide regimes cause physiological responses that lead to cataract formation in Atlantic salmon (Salmo salar L.) smolt. Duplicate groups of 50 g Atlantic salmon smolts were exposed to three freshwater oxygen saturation regimes (95, 112 or 125% saturation), with or without addition of carbon dioxide (measured 17–18 and 2–3 mg L− 1, respectively), for six weeks before transfer to seawater (SW). The FW exposure groups were followed up for another six weeks under a common SW regime. Fish were screened for cataract and sampled accordingly, at start, after 6 weeks in FW and after 6 weeks in SW. Increased growth related cataract incidences and severities were recorded in SW, mainly in the groups previously exposed to normoxic and hyperoxic conditions in FW, as compared to the respective groups added carbon dioxide. The concentration of histidine compounds (imidazoles) in muscle and lens tissue, used as quantitative risk markers of cataract, were lower than observed in earlier studies, however, neither were affected by the present water gas regimes in FW nor after follow up in SW. Independently of water oxygenation in FW, muscle free amino acid profiles in salmon groups concomitantly exposed to elevated carbon dioxide indicated use of selected free amino acids for energy purposes. Significantly lower abundance of heat shock protein 70 mRNA and trends towards stepwise reduction of antioxidant enzymes mRNA in the lens from fish exposed to increased water oxygenation were recorded, probably linked to increased growth and/or external stress during smoltification. This represents a first communication on using early molecular markers to express reduced protection of the fish lens against external stress to explain cataract development.  相似文献   

11.
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l–1 kg–1) were acclimated to SW (980–1,000 mOsm l–1 kg–1) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l–1 kg–1. In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l–1 kg–1) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na+, Cl, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/K+-ATPase activity. Na+/K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg–1 protein h–1 and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/K+-ATPase activity was 5.6±0.8 and 9.2±0.6 mmol Pi mg–1 protein h–1, respectively. Na+/K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4±1.1 and 3.3±1.1 Pi mg–1 protein h–1, respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.  相似文献   

12.
The influence of acclimation to seawater (SW) and growth hormone (GH) administration on immune functions was examined in the rainbow trout (Oncorhynchus mykiss). After 3 days acclimation to dilute SW (12 parts per thousand, ppt), an increase in plasma lysozyme activity was observed compared to the fish kept in fresh water (FW). No change was seen in plasma immunoglobulin M (IgM) levels. When they were transferred from dilute SW to full-strength SW (29 ppt) after a single intra-peritoneal injection of ovine or salmon GH, plasma sodium levels of GH-treated fish were significantly lower than those of the control fish injected with Ringer's solution 24 h after the transfer. The plasma level of IgM was not influenced by GH injection in the fish kept in FW nor in those transferred to SW. The administration of GH increased plasma lysozyme activity in the fish in FW, but no further increase was seen after SW transfer. The production of superoxide anions in peripheral blood leucocytes was stimulated by GH in both FW and SW. These results suggest that GH is involved in the stimulation of the non-specific immune functions in SW-acclimated salmonids.  相似文献   

13.
In teleosts, prolactin (PRL) and growth hormone (GH) act at key osmoregulatory tissues to regulate hydromineral balance. This study was aimed at characterizing patterns of expression for genes encoding receptors for the GH/PRL-family of hormones in the gill and kidney of Mozambique tilapia (Oreochromis mossambicus) during freshwater (FW)-acclimation. Transfer of seawater (SW)-acclimated tilapia to FW elicited rapid and sustained increases in plasma levels and pituitary gene expression of PRL177 and PRL188; plasma hormone and pituitary mRNA levels of GH were unchanged. In the gill, PRL receptor 1 (PRLR1) mRNA increased markedly after transfer to FW by 6 h, while increases in GH receptor (GHR) mRNA were observed 48 h and 14 d after the transfer. By contrast, neither PRLR2 nor the somatolactin receptor (SLR) was responsive to FW transfer. Paralleling these endocrine responses were marked increases in branchial gene expression of a Na+/Cl? cotransporter and a Na+/H+ exchanger, indicators of FW-type mitochondrion-rich cells (MRCs), at 24 and 48 h after FW transfer, respectively. Expression of Na+/K+/2Cl? cotransporter, an indicator of SW-type MRCs, was sharply down-regulated by 6 h after transfer to FW. In kidney, PRLR1, PRLR2 and SLR mRNA levels were unchanged, while GHR mRNA was up-regulated from 6 h after FW transfer to all points thereafter. Collectively, these results suggest that the modulation of the gene expression for PRL and GH receptors in osmoregulatory tissues represents an important aspect of FW-acclimation of tilapia.  相似文献   

14.
To investigate the effect of hyperosmotic medium on production and aggregation of the variant of Angiopoietin-1 (Ang1), cartilage oligomeric matrix protein (COMP)–Ang1, in recombinant Chinese hamster ovary (CHO) cells, CHO cells were cultivated in shaking flasks. NaCl and/or sorbitol were used to raise medium osmolality in the range of 300–450 mOsm/kg. The specific productivity of COMP–Ang1, qCOMP–Ang1, increased as medium osmolality increased. At NaCl-450 mOsm/kg, the qCOMP–Ang1 was 7.7-fold higher than that at NaCl-300 mOsm/kg, while, at sorbitol-450 mOsm/kg, it was 2.9-fold higher than that at sorbitol-300 mOsm/kg. This can be attributed to the increased relative mRNA level of COMP–Ang1 at NaCl-450 mOsm/kg which was approximately 2.4-fold higher than that at sorbitol-450 mOsm/kg. Western blot analysis showed that COMP–Ang1 aggregates started to occur in the late-exponential phase of cell growth. When sorbitol was used to raise the medium osmolality, a severe aggregation of COMP–Ang1 was observed. On the other hand, when NaCl was used, the aggregation of COMP–Ang1 was drastically reduced at NaCl-400 mOsm/kg. At NaCl-450 mOsm/kg, the aggregation of COMP–Ang1 was hardly observed. This suggests that environmental conditions are critical for the aggregation of COMP–Ang1. Taken together, the use of NaCl-induced hyperosmotic medium to cell culture process turns out to be an efficient strategy for enhancing COMP–Ang1 production and reducing COMP–Ang1 aggregation.  相似文献   

15.
Summary Rates of intestinal water, sodium and chloride absorption in tilapia, adapted to fresh water (FW) and seawater (SW), were measured in vitro, using noneverted sacs made from the anterior, middle and posterior intestinal regions. The anterior intestine from SW fish showed considerably less water, sodium and chloride absorption compared with that seen in FW fish. The middle intestine showed either minimal absorption or some secretion in both FW and SW. In the posterior intestine, water absorption was only limitedly affected by SW-adaptation, but sodium and chloride absorption rates were significantly lower in SW fish. Reductions in water absorption were already evident in the anterior intestine 24 h after transfer to 1/3 SW but reached lower levels 3 to 5 days following transfer to 100% SW. Thus, the anterior intestine of tilapia responds to increased environmental salinity by decreasing uptake of ions, whereas the posterior intestine maintains similar water absorption in both FW and SW, although ion absorption is lower in SW.Prolactin administration to SW fish augmented sodium and water absorption in the anterior intestine but had no effect on chloride absorption. In contrast, cortisol administration to FW fish decreased absorption of sodium, chloride and water to levels usually seen in SW fish. The observed effects of these hormones in tilapia intestinal absorption may be confined to the specialized anterior intestinal region in this species; hormonal effects on the rest of the intestine were not examined.  相似文献   

16.
Transepithelial potentials (TEP) were measured in killifish, acclimated to freshwater (FW), seawater (SW), 33% SW or cycling salinities relevant to tidal cycles in an estuary, and subsequently subjected to salinity changes in progressive or random order. Random compared to progressive salinity changes in an upward or downward direction in FW- and SW-acclimated fish, respectively, did not greatly influence responses to salinity change. Fish acclimated to SW or 33% SW as well as those acclimated to cycling salinities behaved similarly (TEP more positive than +15 mV in 100% SW, decreasing to ~0 mV at 20–40% SW, and more negative than −30 mV in FW). In contrast, FW-acclimated fish displayed a less pronounced TEP response to salinity (0 mV in FW through 20% SW, increasing thereafter to values more positive than +10 mV at 100% SW). We conclude that when evaluated under estuarine tidal conditions, the killifish gill exhibits adaptive electrical characteristics, opposing Na+ loss at low salinity and favouring Na+ extrusion at high salinity, changes explained at least in part by the Cl to Na+ permeability ratio. Thus animals living in the estuaries can move to lower and higher salinities for short periods with little physiological disturbance, but this ability is lost after acclimation to FW.  相似文献   

17.
The tilapia (Oreochromis mossambicus) is a euryhaline fish exhibiting adaptive changes in cell size, phenotype, and ionoregulatory functions upon salinity challenge. Na+/Cl? cotransporter (NCC) and Na+/K+/2Cl? cotransporter (NKCC) are localized in the apical and basolateral membranes of mitochondria‐rich (MR) cells of the gills. These cells are responsible for chloride absorption (NCC) and secretion (NKCC), respectively, thus, the switch of gill NCC and NKCC expression is a crucial regulatory mechanism for salinity adaptation in tilapia. However, little is known about the interaction of cytoskeleton and these adaptive changes. In this study, we examined the time‐course of changes in the localization of NKCC/NCC in the gills of tilapia transferred from fresh water (FW) to brackish water (20‰) and from seawater (SW; 35‰) to FW. The results showed that basolateral NKCC disappeared and NCC was expressed in the apical membrane of MR cells. To further clarify the process of these adaptive changes, colchicine, a specific inhibitor of microtubule‐dependent cellular regulating processes was used. SW‐acclimated tilapia were transferred to SW, FW, and FW with colchicine (colchicine‐FW) for 96 h. Compared with the FW‐treatment group, in the MR cells of colchicine‐FW‐treatment group, (1) the average size was significantly larger, (2) only wavy‐convex‐subtype apical surfaces were found, and (3) the basolateral (cytoplasmic) NKCC signals were still exhibited. Taken together, our results suggest that changes in size, phenotype, as well as the expression of NCC and NKCC cotransporters of MR cells in the tilapia are microtubule‐dependent. J. Morphol. 277:1113–1122, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Na,K-ATPase (sodium pumps) provide the primitive driving force for ion transport in branchial epithelial cells. Immunoblots of epithelial homogenates of both seawater (SW)- and freshwater (FW)-adapted tilapia gills as well as rat brain homogenate, a positive control, revealed one major band with a molecular weight of about 100 kDa. SW-adapted tilapia gills possessed larger (about 2-fold) amounts of sodium pumps compared with FW-adapted tilapia gills. (3)H-ouabain binding representing functional binding sites of Na,K-ATPase was also higher (about 3.5-fold) in gills of SW-adapted tilapia compared to that of FW-adapted fish. Moreover, specific activities of SW fish were higher (about 2-fold) than those of FW fish. Double labeling of Na,K-ATPase and Con-A, a fluorescent marker of MR cells, in tilapia gills followed by analysis with confocal microscopy showed that sodium pumps were localized mainly in MR cells, including the SW type and different FW types. Although more-active expression of Na,K-ATPase was demonstrated in gills of SW-adapted tilapia, no significant differences in densities of apical openings of MR cells were found between SW- and FW-adapted fish. These results indicate that, during salinity challenge, tilapia develop more "functional" Na,K-ATPase in SW-type MR cells to meet physiological demands.  相似文献   

19.
Selenoproteins are ubiquitously expressed, act on a variety of physiological redox-related processes, and are mostly regulated by selenium levels in animals. To date, the expression of most selenoproteins has not been verified in euryhaline fish models. The Mozambique tilapia, Oreochromis mossambicus, a euryhaline cichlid fish, has a high tolerance for changes in salinity and survives in fresh water (FW) and seawater (SW) environments which differ greatly in selenium availability. In the present study, we searched EST databases for cichlid selenoprotein mRNAs and screened for their differential expression in FW and SW-acclimated tilapia. The expression of mRNAs encoding iodothyronine deiodinases 1, 2 and 3 (Dio1, Dio2, Dio3), Fep15, glutathione peroxidase 2, selenoproteins J, K, L, M, P, S, and W, was measured in the brain, eye, gill, kidney, liver, pituitary, muscle, and intraperitoneal white adipose tissue. Gene expression of selenophosphate synthetase 1, Secp43, and selenocysteine lyase, factors involved in selenoprotein synthesis or in selenium metabolism, were also measured. The highest variation in selenoprotein and synthesis factor mRNA expression between FW- and SW-acclimated fish was found in gill and kidney. While the branchial expression of Dio3 was increased upon transferring tilapia from SW to FW, the inverse effect was observed when fish were transferred from FW to SW. Protein content of Dio3 was higher in fish acclimated to FW than in those acclimated to SW. Together, these results outline tissue distribution of selenoproteins in FW and SW-acclimated tilapia, and indicate that at least Dio3 expression is regulated by environmental salinity.  相似文献   

20.
The metabolic aspects of ionic and osmotic regulation in fish are not well understood. The objective of this study was to examine changes in carbohydrate metabolism during seawater (SW) acclimation in the euryhaline tilapia (Oreochromis mossambicus). Hepatic activities of three key enzymes of the intermediary metabolism, phosphofructokinase, glycogen phosphorylase and glucose 6-phosphate dehydrogenase, together with glycogen content and plasma glucose concentration were measured at 0, 0.5, 1, 2, 3, 6, 12, 24, 48 and 96 h after the direct transfer of tilapia from fresh water (FW) to 70% SW. Plasma growth hormone, prolactin177 and prolactin188, Na+ and Cl concentrations were also measured. Plasma Na+ and Cl levels were highest at 12 h, but returned to FW levels at 24 h after transfer, suggesting the tilapia were able to osmoregulate within 24 h after transfer. Plasma glucose levels were significantly higher in 70% SW than in FW during the course of acclimation, especially in the early stages. Hepatic enzyme activities and glycogen content did not change significantly during the acclimation period. Our results suggest the possibility that glucose is an important energy source for osmoregulation during the acclimation to hyperosmotic environments in O. mossambicus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号