首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our laboratory, we have developed a prototype of a personal lift augmentation device (PLAD) that can be worn by workers during manual handling tasks involving lifting or lowering or static holding in symmetric and asymmetric postures. Our concept was to develop a human-speed on-body assistive device that would reduce the required lumbar moment by 20-30% without negative consequences on other joints or lifting kinematics. This paper provides mathematical proof using simplified free body diagrams and two-dimensional moment balance equations. Empirical proof is also provided based on lifting trials with nine male subjects who executed sagittal plane lifts using three lifting styles (stoop, squat, free) and three different loads (5, 15, and 25kg) under two conditions (PLAD, No-PLAD). Nine Fastrak sensors and six in-line strap force sensors were used to estimate the reduction of compressive and shear forces on L4/L5 as well as estimate the forces transferred to the shoulders and knees. Depending on lifting technique, the PLAD applied an added 23-36Nm of torque to assist the back muscles during lifting tasks. The peak pelvic girdle contact forces were estimated and their magnitudes ranged from 221.3+/-11.2N for stoop lifting, 324.3+/-17.2N for freestyle lifts to 468.47+/-23.2N for squat lifting. The PLAD was able to reduce the compression and shear forces about 23-29% and 7.9-8.5%, respectively.  相似文献   

2.
Repetitive work in the stooped posture is a known risk factor for developing low back disorders (LBDs); regardless, the stooped posture is widespread throughout the world in the agriculture, construction, and mining industries. An on-body weight transfer device was tested as a possible intervention for reducing the risk of developing LBDs.Eighteen subjects (11 male and 7 female), with no history of LBDs, performed stooped posture tasks in the laboratory. Surface electromyograms of the erector spinae, rectus abdominis, biceps femoris, and tibialis anterior muscles were recorded. Bodily joint flexions were measured with a combination of inclinometers and electrogoniometers.When wearing the device in the stooped posture, biceps femoris activity and lumbar flexion were significantly reduced. Subjects who did not experience flexion–relaxation had a significant reduction in lumbar erector spinae activity.By reducing back muscle activity, and by limiting lumbar flexion, the device could reduce the risk of developing LBDs for those who work while adopting the stooped posture. The device may also be beneficial for those with existing LBDs. Follow up field studies are needed to confirm the long-term potential benefits of such an intervention approach.  相似文献   

3.
PurposeEvaluate whether wearing a passive back-support exoskeleton during repetitive lifting impairs motor variability of erector spinae muscle and spine movement and whether this association is influenced by lifting style.Scope: Thirty-six healthy males performed ten lifts in four randomized conditions with exoskeleton (without, with) and lifting style (squat, stoop) as dependent variables. One lifting cycle contained four phases: bending/straighten without/with load. Erector spinae muscular activity, thoracic kyphosis and lumbar lordosis were measured with surface electromyography and gravimetric position sensors, respectively. Absolute and relative cycle-to-cycle variability were calculated. The effects of exoskeleton and exoskeleton × lifting style were assessed on outcomes during the complete lifting cycle and its four phases.ResultsFor the complete lifting cycle, muscular variability and thoracic kyphosis variability decreased whereas lumbar lordosis variability increased with exoskeleton. For lifting phases, effects of exoskeleton were mixed. Absolute and relative muscular variability showed a significant interaction effect for the phase straighten with load; variability decreased with exoskeleton during squat lifting.ConclusionUsing the exoskeleton impaired several motor variability parameters during lifting, supporting previous findings that exoskeletons may limit freedom of movement. The impact of this result on longer-term development of muscular fatigue or musculoskeletal disorders cannot yet be estimated.  相似文献   

4.
Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied.The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion–extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion–extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded.Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion.The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain.  相似文献   

5.
To establish safe levels for physical strain in occupational repetitive lifting, it is of interest to know the specific maximal working capacity. Power output, O2 consumption, heart rate and ventilation were measured in ten experienced forestry workers during maximal squat and stoop repetitive lifting. The two modes of repetitive lifting were also compared with maximal treadmill running. In addition, electromyogram (EMG) activity in four muscles was recorded and perceived central, local low-back and thigh exertion were assessed during the lifting modes. No significant difference was found in power output between the two lifting techniques. Despite this the mean O2 consumption was significantly greater during maximal squat lifting [38.7 (SD 5.8) ml·kg–1-·min–1] than maximal stoop lifting [32.9 (SD 5.7) ml·kg–1·min–1] (P<0.001). No significant correlation was found between O2 consumption (in millilitres per kilogram per minute) during maximal treadmill running and maximal stoop lifting, while O2 consumption during maximal squat lifting correlated highly with that of maximal treadmill running (r=0.928, P<0.001) and maximal stoop lifting (r=0.808, P<0.01). While maximal heart rates were significantly different among the three types of exercise, no such differences were found in the central rated perceived exertions. Perceived low-back exertion was rated significantly lower during squat lifting than during stoop lifting. The EMG recordings showed a higher activity for the vastus lateralis muscle and lower activity for the biceps femoris muscle during squat lifting than during stoop lifting. Related to the maximal voluntary contraction, the erector spinae muscle showed the highest activity irrespective of lifting technique.  相似文献   

6.
This study investigated the effects of age on upper erector spinae (UES), lower erector spinae (LES) and lower body (gluteus maximus; biceps femoris; and vastus lateralis) muscle activity during a repetitive lifting task. Twenty-four participants were assigned to two age groups: ‘younger’ (n = 12; mean age ± SD = 24.6 ± 3.6 yrs) and ‘older’ (n = 12; mean age = 46.5 ± 3.0 yrs). Participants lifted and lowered a box (13 kg) repetitively at a frequency of 10 lifts per minute for a maximum of 20 min. EMG signals were collected every minute and normalised to a maximum voluntary isometric contraction. A submaximal endurance test of UES and LES was used to assess fatigue. Older participants showed higher levels of UES and LES muscle activity (approximately 12–13%) throughout the task, but less fatigue compared to the younger group post-task completion. When lifting, lower-limb muscle activity was generally higher in older adults, although temporal changes were similar. While increased paraspinal muscle activity may increase the risk of back injury in older workers when repetitive lifting, younger workers may be more susceptible to fatigue-related effects. Education and training in manual materials handling should consider age-related differences when developing training programmes.  相似文献   

7.

Background

Biering-Sørenson (1984) found that individuals with less lumbar extensor muscle endurance had an increased occurrence of first episode low back pain. As a result, back endurance tests have been recommended for inclusion in health assessment protocols. However, different studies have reported markedly different values for endurance times, leading some researchers to believe that the back is receiving support from the biceps femoris and gluteus maximus. Therefore, this study was designed to examine the haemodynamic and neuromuscular activity of the erector spinae, biceps femoris, and gluteus maximus musculature during the Biering-Sørenson Muscular Endurance Test (BSME).

Methods

Seventeen healthy individuals and 46 individuals with chronic low back pain performed the Biering-Sørenson Muscular Endurance Test while surface electromyography was used to quantify neuromuscular activity. Disposable silver-silver-chloride electrodes were placed in a bipolar arrangement over the right or left biceps femoris, gluteus maximus, and the lumbosacral paraspinal muscles at the level of L3. Near Infrared Spectroscopy was used simultaneously to measure tissue oxygenation and blood volume changes of the erector spinae and biceps femoris.

Results

The healthy group displayed a significantly longer time to fatigue (Healthy: 168.5s, LBP: 111.1s; p ≤ 0.05). Significant differences were shown in the median frequency slope of the erector spinae between the two groups at 90–100% of the time to fatigue while no significant differences were noted in the haemodynamic data for the two groups.

Conclusion

Although the BSME has been recognized as a test for back endurance, individuals with chronic LBP appear to incorporate a strategy that may help support the back musculature by utilizing the biceps femoris and gluteus maximus to a greater degree than their healthy counterparts.
  相似文献   

8.
Occupations demanding frequent and heavy lifting are associated with an increased risk of injury. A personal lift assist device (PLAD) was designed to assist human muscles through the use of elastic elements. This study was designed to determine if the PLAD could reduce the level of general and local back muscle fatigue during a cyclical lifting task. Electromyography of two erector spinae sites (T9 and L3) was recorded during a 45-min lifting session at six lifts/lowers per minute in which male participants (n = 10) lifted a box scaled to represent 20% of their maximum back extensor strength. The PLAD device reduced the severity of muscular fatigue at both muscle sites. RMS amplitude increased minimally (22% and 26%) compared to the no-PLAD condition (104% and 88%). Minimal median frequency decreases (0.33% and 0.41%) were observed in the PLAD condition compared to drops of 12% and 20% in the no-PLAD condition. The PLAD had an additional benefit of minimizing pre–post changes in muscular strength and endurance. The PLAD also resulted in a significantly lower rate of perceived exertion across the lifting session. It was concluded that the PLAD was effective at decreasing the level of back muscular fatigue.  相似文献   

9.
Prone hip extension has been used as a self-perturbation task to test the stability of the lumbopelvic region. However, the relationship between recruitment patterns in the hip and trunk muscles and lumbopelvic kinematics remains unknown. The present study aimed to examine if the balance of hip and trunk muscle activities are related to pelvic motion and low back muscle activity during prone hip extension. Sixteen healthy participants performed prone hip extension from 30° of hip flexion to 10° of hip extension. Surface electromyography (of the gluteus maximus, semitendinosus, rectus femoris, tensor fasciae latae, multifidus, and erector spinae) and pelvic kinematic measurements were collected. Results showed that increased activity of the hip flexor (tensor fasciae latae) relative to that of hip extensors (gluteus maximus and semitendinosus) was significantly associated with increased anterior pelvic tilt during hip extension (r=0.52). Increased anterior pelvic tilt was also significantly related to the delayed onset timing of the contralateral and ipsilateral multifidus (r=0.57, r=0.53) and contralateral erector spinae (r=0.63). Additionally, the decrease of the gluteus maximus activity relative to the semitendinosus was significantly related to increased muscle activity of the ipsilateral erector spinae (r=-0.57). These results indicate that imbalance between the agonist and antagonist hip muscles and delayed trunk muscle onset would increase motion in the lumbopelvic region.  相似文献   

10.
The spinal stability and passive-active load partitioning under dynamic squat and stoop lifts were investigated as the ligamentous stiffness in flexion was altered. Measured in vivo kinematics of subjects lifting 180 N at either squat or stoop technique was prescribed in a nonlinear transient finite element model of the spine. The Kinematics-driven approach was utilized for temporal estimation of muscle forces, internal spinal loads and system stability. The finite element model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles and trunk dynamic characteristics while subject to measured kinematics and gravity/external loads. Alterations in passive properties of spine substantially influenced muscle forces, spinal loads and system stability in both lifting techniques, though more so in stoop than in squat. The squat technique is advocated for resulting in smaller spinal loads. Stability of spine in the sagittal plane substantially improved with greater passive properties, trunk flexion and load. Simulation of global extensor muscles with curved rather than straight courses considerably diminished loads on spine and increased stability throughout the task.  相似文献   

11.
The purpose of this study was to verify the difference between carrying a load on the sacrum (LOS) and on the lumbar vertebrae (LOL) in oxygen uptake, muscle activities, heart rate, cadence, and subjective response. Nine males (26.7 +/- 3.1 years old), each carrying a 7.5 kg carrier frame and a 40 kg load, walked on a treadmill at a speed of 50 m/min. EMGs were recorded from the trapezius, rectus abdominis, erector spinae, vastus lateralis, rectus femoris, vastus medialis, biceps femoris long head, tibial anterior, soleus, medial head of gastrocnemius, and the lateral head of gastrocnemius. For each subject the integrated EMG (IEMG) was normalized by dividing the IEMG in the LOL and LOS by the IEMG in a no-load condition (NL) for each investigated muscle. The following was significantly higher in LOL than in LOS: oxygen uptake; IEMG of the tibial anterior, soleus, and medial head of gastrocnemius; cadence; and rated perceived exertion. However, IEMG of the erector spinae was significantly lower in LOL than in LOS. These results suggest that seita-fitting in LOS causes a decrease of leg muscle activities, which causes oxygen uptake to decrease beyond the increase of the erector spinae activity.  相似文献   

12.
In this study, we explore the relationship between moments in the frontal and sagittal planes, generated by a lifting task, vs the electromyographic (EMG) activity of right and left trunk muscle groups. In particular, we postulate that the functional dependence between erector spinae muscle activity and the applied lifting moments about the spine is as follows: the sum of left and right erector spinae processed EMG depends on the sagittal plane moment, and the difference of left and right erector spinae processed EMG depends on the frontal plane moment. A simple out-of-sagittal plane physical model, treating the lumbar spine as a two degree-of-freedom pivot point is discussed to justify these hypotheses. To validate this model, we collected surface EMG and lifting moment data for ten males performing a grid of frontal and sagittal plane lifting tasks. A digital RMS-to-DC algorithm was developed for processing raw EMG. For these tests, we measured EMG for the left and right erector spinae and for the left and right external oblique muscles. The processed EMG signals of the left and right erector spinae muscles are summed and differenced for comparison to the measured sagittal and frontal plane moments. A linear correlation (r2) of 0.96 was obtained for the sum of erector spinae EMG vs the sagittal plane moment; a corresponding value of r2 = 0.95 was obtained for the difference vs the frontal plane moment. No correlations (r2 less than 0.004) was found for the sagittal plane moment and the difference of the left and right erector spinae EMG, and the frontal plane moment and the sum of the left and right erector spinae EMG.  相似文献   

13.
The goal of this study was to quantify the relative contributions of each muscle group surrounding the spine to vertebral joint rotational stiffness (VJRS) during the push-up exercise. Upper-body kinematics, three-dimensional hand forces and lumbar spine postures, and 14 channels (bilaterally from rectus abdominis, external oblique, internal oblique, latissimus dorsi, thoracic erector spinae, lumbar erector spinae, and multifidus) of trunk electromyographic (EMG) activity were collected from 11 males and used as inputs to a biomechanical model that determined the individual contributions of 10 muscle groups surrounding the lumbar spine to VJRS at five lumbar vertebral joints (L1-L2 to L5-S1). On average, the abdominal muscles contributed 64.32 +/- 8.50%, 86.55 +/- 1.13%, and 83.84 +/- 1.95% to VJRS about the flexion/extension, lateral bend, and axial twist axes, respectively. Rectus abdominis contributed 43.16 +/- 3.44% to VJRS about the flexion/extension axis at each lumbar joint, and external oblique and internal oblique, respectively contributed 52.61 +/- 7.73% and 62.13 +/- 8.71% to VJRS about the lateral bend and axial twist axes, respectively, at all lumbar joints with the exception of L5-S1. Owing to changes in moment arm length, the external oblique and internal oblique, respectively contributed 55.89% and 50.01% to VJRS about the axial twist and lateral bend axes at L5-S1. Transversus abdominis, multifidus, and the spine extensors contributed minimally to VJRS during the push-up exercise. The push-up challenges the abdominal musculature to maintain VJRS. The orientation of the abdominal muscles suggests that each muscle primarily controls the rotational stiffness about a single axis.  相似文献   

14.

Background

The aim of this study was to investigate the association between walking ability and muscle atrophy in the trunk and lower limbs.

Methods

Subjects in this longitudinal study were 21 elderly women who resided in nursing homes. The thicknesses of the following trunk and lower-limb muscles were measured using B-mode ultrasound: rectus abdominis, external oblique, internal oblique, transversus abdominis, erector spinae, lumbar multifidus, psoas major, gluteus maximus, gluteus medius, gluteus minimus, rectus femoris, vastus lateralis, vastus intermedius, biceps femoris, gastrocnemius, soleus, and tibialis anterior. Maximum walking speed was used to represent walking ability. Maximum walking speed and muscle thickness were assessed before and after a 12-month period.

Results

Of the 17 measured muscles of the trunk and lower limbs, age-related muscle atrophy in elderly women was greatest in the erector spinae, rectus femoris, vastus lateralis, vastus intermedius, and tibialis anterior muscles. Correlation coefficient analyses showed that only the rate of thinning of the vastus lateralis was significantly associated with the rate of decline in maximum walking speed (r = 0.518, p < 0.05).

Conclusions

This longitudinal study suggests that reduced walking ability may be associated with muscle atrophy in the trunk and lower limbs, especially in the vastus lateralis muscle, among frail elderly women.  相似文献   

15.
The personal lift-assist device (PLAD) is an on-body ergonomic aid that reduces low back physical demands through the restorative moment of an external spring element, which possesses a mechanical advantage over the erector spinae. Although the PLAD has proven effective at reducing low back muscular demand, spinal moments, and localized muscular fatigue during laboratory and industrial tasks, the effects of the device on the neuromuscular control of spinal stability during lifting have yet to be assessed. Thirty healthy subjects (15M, 15F) performed repetitive lifting for three minutes, at a rate of 10 lifts per minute, with and without the PLAD. Maximum finite-time Lyapunov exponents, representing short-term (λ(max-s)) and long-term (λ(max-l)) divergence were calculated from the measured trunk kinematics to estimate the local dynamic stability of the lumbar spine. Using a mixed-design repeated-measures ANOVA, it was determined that wearing the PLAD did not significantly change λ(max-s) (μ(NP)=0.335, μ(P)=0.321, p=0.225), but did significantly reduce λ(max-l) (μ(NP)=0.0024, μ(P)=-0.0011, p=0.014, η(2)=0.197). There were no between-subject effects of sex, or significant interactions (p>0.720). The present results indicated that λ(max-s) was not statistically different between the device conditions, but that the PLAD significantly reduced λ(max-l) to a negative (stable) value. This shows that subjects' neuromuscular systems were able to respond to local perturbations more effectively when wearing the device, reflecting a more stable control of spinal movements. These findings are important when recommending the PLAD for long-term industrial or clinical use.  相似文献   

16.
The purpose of the present study was to define the degree of muscular activation while walking in water in order to aid rehabilitation therapists in their choice of exercises for daily clinical practice in aquatherapy. This study compares the electromyographic (EMG) activity of the rectus femoris, the soleus of the right lower limb and the contra-lateral lumbar erector spinae, during gait in water and on dry ground. The study was carried out on a group of seven healthy female subjects without past rachidian pathology. EMG recordings in water were taken with immersion to the umbilicus at "comfortable" speed. A total of five recordings were made at this speed, in water and on dry ground, with a one-minute rest between recordings. Integrated EMG results, averaged on eight gait cycles, show, for all the subjects, more erector spinae activity in water than on the ground (p<0.01). Soleus activity is greater during gait on dry ground for the whole group (p<0.01). For four subjects, the electromyographic (EMG) activity of the rectus femoris over the entire cycle is greater than that exhibited on dry ground.In the two experimental situations, no differences have been found either on amplitudinal peaks or on the shape of the patterns. The speed and gait cycle length are reduced in water (60% and 25%). Walking in water at an umbilical level increases the activity of the erector spinae and activates the rectus femoris to levels near to or higher than walking on dry ground.These data should be taken into account by the physiotherapist when designing a rehabilitation programme.  相似文献   

17.
The aim of this study was to assess the effect of verbal instruction, surface stability, and load intensity on trunk muscle activity levels during the free weight squat exercise. Twelve trained males performed a free weight squat under four conditions: (1) standing on stable ground lifting 50% of their 1-repetition maximum (RM), (2) standing on a BOSU balance trainer lifting 50% of their 1-RM, (3) standing on stable ground lifting 75% of their 1-RM, and (4) receiving verbal instructions to activate the trunk muscles followed by lifting 50% of their 1-RM. Surface EMG activity from muscles rectus abdominis (RA), external oblique (EO), transversus abdominis/internal oblique (TA/IO), and erector spinae (ES) were recorded for each condition and normalized for comparisons. Muscles RA, EO, and TA/IO displayed greater peak activity (39–167%) during squats with instructions compared to the other squat conditions (P = 0.04–0.007). Peak EMG activity of muscle ES was greater for the 75% 1-RM condition than squats with instructions or lifting 50% of 1-RM (P = 0.04–0.02). The results indicate that if the goal is to enhance EMG activity of the abdominal muscles during a multi-joint squat exercise then verbal instructions may be more effective than increasing load intensity or lifting on an unstable surface. However, in light of other research, conscious co-activation of the trunk muscles during the squat exercise may lead to spinal instability and hazardous compression forces in the lumbar spine.  相似文献   

18.
BackgroundMovements in the lumbar spine, including flexion and extension are governed by a complex neuromuscular system involving both active and passive units. Several biomechanical and clinical studies have shown the myoelectric activity reduction of the lumbar extensor muscles (flexion–relaxation phenomenon) during lumbar flexion from the upright standing posture. The relationship between flexibility and EMG activity pattern of the erector spinae during dynamic trunk flexion–extension task has not yet been completely discovered.ObjectiveThe purpose of this study was to investigate the relationship between general and lumbar spine flexibility and EMG activity pattern of the erector spinae during the trunk flexion–extension task.MethodsThirty healthy female college students were recruited in this study. General and lumbar spine flexibilities were measured by toe-touch and modified schober tests, respectively. During trunk flexion–extension, the surface electromyography (EMG) from the lumbar erector spinae muscles as well as flexion angles of the trunk, hip, lumbar spine and lumbar curvature were simultaneously recorded using a digital camera. The angle at which muscle activity diminished during flexion and initiated during extension was determined and subjected to linear regression analysis to detect the relationship between flexibility and EMG activity pattern of the erector spinae during trunk flexion–extension.ResultsDuring flexion, the erector spinae muscles in individuals with higher toe-touch scores were relaxed in larger trunk and hip angles and reactivated earlier during extension according to these angles (P < 0.001) while in individuals with higher modified schober scores this muscle group was relaxed later and reactivated sooner in accordance with lumbar angle and curvature (P < 0.05). Toe-touch test were significantly correlated with trunk and hip angles while modified schober test showed a significant correlation with lumbar angle and curvature variables.ConclusionThe findings of this study indicate that flexibility plays an important role in trunk muscular recruitment pattern and the strategy of the CNS to provide stability. The results reinforce the possible role of flexibility alterations as a contributing factor to the motor control impairments. This study also shows that flexibility changes behavior is not unique among different regions of the body.  相似文献   

19.
The current study examined of the effect of intermittent, short-term periods of full trunk flexion on the development of low back pain (LBP) during two hours of standing. Sixteen participants completed two 2-h standing protocols, separated by one week. On one day, participants stood statically for 2 h (control day); on the other day participants bent forward to full spine flexion (termed flexion trials) to elicit the flexion relaxation (FR) phenomenon for 5 s every 15 min (experimental day). The order of the control and experimental day was randomized. During both protocols, participants reported LBP using a 100 mm visual analogue scale every 15 min. During the flexion trials, lumbar spine posture, erector spinae and gluteus medius muscle activation was monitored. Ultimately, intermittent trunk flexion reduced LBP by 36% (10 mm) at the end of a 2-h period of standing. Further, erector spinae and gluteus medius muscle quietening during FR was observed in 91% and 65% of the flexion trials respectively, indicating that periods of rest did occurred possibly contributing to the reduction in LBP observed. Since flexion periods do not require any aids, they can be performed in most workplaces thereby increasing applicability.  相似文献   

20.
 The purpose of this study was to provide objective information on the involvement of different abdominal and hip flexor muscles during various types of common training exercises used in rehabilitation and sport. Six healthy male subjects performed altogether 38 different static and dynamic training exercises – trunk and hip flexion sit-ups, with various combinations of leg position and support, and bi- and unilateral leg lifts. Myoelectric activity was recorded with surface electrodes from the rectus abdominis, obliquus externus, obliquus internus, rectus femoris, and sartorius muscles and with indwelling fine-wire electrodes from the iliacus muscle. The mean electromyogram amplitude, normalised to the highest observed value, was compared between static and dynamic exercises separately. The hip flexors were highly activated only in exercises involving hip flexion, either lifting the whole upper body or the legs. In contrast, the abdominal muscles showed marked activation both during trunk and hip flexion sit-ups. In hip flexion sit-ups, flexed and supported legs increased hip flexor activation, whereas such modifications did not generally alter the activation level of the abdominals. Bilateral, but not unilateral, leg lifts required activation of abdominal muscles. In trunk flexion sit-ups an increased activation of the abdominal muscles was observed with increased flexion angle, whereas the opposite was true for hip flexion sit-ups. Bilateral leg lifts resulted in higher activity levels than hip flexion sit-ups for the iliacus and sartorius muscles, while the opposite was true for rectus femoris muscles. These data could serve as a basis for improving the design and specificity of test and training exercises. Accepted: 12 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号