首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maximal voluntary isometric torque–angle relationships of elbow extensors and flexors in the transverse plane (humerus elevation angle of 90°) were measured at two different horizontal adduction angles of the humerus compared to thorax: 20° and 45°. For both elbow flexors and extensors, the torque–angle relationship was insensitive to this 25° horizontal adduction of the humerus. The peak in torque–angle relationship of elbow extensors was found at 55° (0° is full extension). This is closer to full elbow extension than reported by researchers who investigated this relationship in the sagittal plane. Using actual elbow angles during contraction, as we did in this study, instead of angles set by the dynamometer, as others have done, can partly explain this difference.We also measured electromyographic activity of the biceps and triceps muscles with pairs of surface electrodes and found that electromyographic activity level of the agonistic muscles was correlated to measured net torque (elbow flexion torque: Pearson’s r = 0.21 and extension torque: Pearson’s r = 0.53). We conclude that the isometric torque–angle relationship of the elbow extensors found in this study provides a good representation of the force–length relationship and the moment arm–angle relationship of the elbow extensors, but angle dependency of neural input gives an overestimation of the steepness.  相似文献   

2.
Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947–0.966; standard error of measurement range: 5.1–9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641–0.710), step length (r range: 0.685–0.820) and WOMAC function (r range: 0.575–0.663), independent from the modality (P < 0.05). Uninvolved quadriceps strength was also significantly correlated to walking speed (r range: 0.413–0.539), step length (r range: 0.514–0.608) and WOMAC function (r range: 0.374–0.554) (P < 0.05), except for WOMAC function/isokinetic peak torque (P > 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients.  相似文献   

3.
This study aimed to evaluate the validity and test–retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r = 0.74−0.85; P < 0.001) and between EMG activity and submaximal isometric torque (r  0.99; P < 0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from −3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test–retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes.  相似文献   

4.
Although it has been reported that strengthening exercise in stroke patients is beneficial for their motor recovery, there is little evidence about which exercise method is the better option. The purpose of this study was to compare isotonic and isokinetic exercise by surface electromyography (EMG) analysis using standardized methods.Nine stroke patients performed three sets of isotonic elbow extensions at 30% of their maximal voluntary isometric torque followed by three sets of maximal isokinetic elbow extensions with standardization of mean angular velocity and the total amount of work for each matched set in two strengthening modes. All exercises were done by using 1-DoF planner robot to regulate exact resistive torque and speed. Surface electromyographic activity of eight muscles in the hemiplegic shoulder and elbow was recorded. Normalized root mean square (RMS) values and co-contraction index (CCI) were used for the analysis.The isokinetic mode was shown to activate the agonists of elbow extension more efficiently than the isotonic mode (normalized RMS for pooled triceps: 96.0 ± 17.0 (2nd), 87.8 ± 14.4 (3rd) in isokinetic, 80.9 ± 11.0 (2nd), 81.6 ± 12.4 (3rd) in isotonic contraction, F[1, 8] = 11.168; P = 0.010) without increasing the co-contraction of muscle pairs, implicating spasticity or synergy.  相似文献   

5.
6.
A recorded muscular torque at one joint is a resultant torque corresponding to the participation of both agonist and antagonist muscles. This study aimed to examine the effect of aging on the mechanical contributions of both plantar- and dorsi-flexors to the resultant maximal voluntary contraction (MVC) torques exerted at the ankle joint, in dorsi-flexion (DF) and plantar-flexion (PF). The estimation of isometric agonist and antagonist torques by means of an EMG biofeedback technique was made with nine young (mean age 24 years) and nine older (mean age 80 years) men. While there was a non-significant age-related decline in the measured resultant DF MVC torque (?15%; p = 0.06), there was a clear decrease in the estimated agonist MVC torque exerted by the dorsi-flexors (?39%; p = 0.001). The DF-to-PF resultant MVC torque ratio was significantly lower in young than in older men (0.25 vs. 0.31; p = 0.006), whereas the DF-to-PF agonist MVC torque ratio was no longer different between the two populations (0.38 vs. 0.35; p > 0.05). Thus, agonist MVC torques in PF and DF would be similarly affected by aging, which could not be deduced when only resultant torques were examined.  相似文献   

7.
In order to decrease the amount of time that it takes the catcher to throw the ball, a catcher may chose to throw from the knees. Upper extremity kinematics may play a significant role in the kinetics about the elbow observed in catchers throwing from the knees. If relationships between kinematics and kinetics exist then the development of training and coaching instruction may help in reduced upper extremity injury risk. Twenty-two baseball and softball catchers (14.36 ± 3.86 years; 165.11 ± 17.54 cm; 65.67 ± 20.60 kg) volunteered. The catchers exhibited a less trunk rotation (5.6 ± 16.2°), greater elbow flexion (87.9 ± 21.4°) and decreased humeral elevation (71.1 ± 12.3°) at the event of maximum shoulder external rotation as compared to what has previously reported in catchers. These variables are important, as they have previously been established as potential injury risk factors in pitchers, however it is not yet clear the role these variables play in catchers’ risk of injury. A positive relationship between elbow varus torque during the deceleration phase and elbow flexion at MIR was observed (r = 0.609; p = 0.003). Throwing from the knees reduces a catcher’s ability to utilize the proximal kinetic chain and this may help to explain why their kinematics and kinetics differ from what has previously been presented in the literature.  相似文献   

8.
Background: Compared with visual torque-onset-detection (TOD), threshold-based TOD produces onset bias, which increases with lower torques or rates of torque development (RTD). Purpose: To compare the effects of differential TOD-bias on common contractile parameters in two torque-disparate groups. Methods: Fifteen boys and 12 men performed maximal, explosive, isometric knee-extensions. Torque and EMG were recorded for each contraction. Best contractions were selected by peak torque (MVC) and peak RTD. Visual-TOD-based torque-time traces, electromechanical delays (EMD), and times to peak RTD (tRTD) were compared with corresponding data derived from fixed 4-N m- and relative 5%MVC-thresholds. Results: The 5%MVC TOD-biases were similar for boys and men, but the corresponding 4-N m-based biases were markedly different (40.3 ± 14.1 vs. 18.4 ± 7.1 ms, respectively; p < 0.001). Boys–men EMD differences were most affected, increasing from 5.0 ms (visual) to 26.9 ms (4 N m; p < 0.01). Men’s visually-based torque kinetics tended to be faster than the boys’ (NS), but the 4-N m-based kinetics erroneously depicted the boys as being much faster to any given %MVC (p < 0.001). Conclusions: When comparing contractile properties of dissimilar groups, e.g., children vs. adults, threshold-based TOD methods can misrepresent reality and lead to erroneous conclusions. Relative-thresholds (e.g., 5% MVC) still introduce error, but group-comparisons are not confounded.  相似文献   

9.
Motor unit behavior differs between contraction types at submaximal contraction levels, however is challenging to study during maximal voluntary contractions (MVCs). With multi-channel surface electromyography (sEMG), mean physiological characteristics of the active motor units can be extracted. Two 8-electrode sEMG arrays were attached on biceps brachii muscle (one on each head) to examine behavior of sEMG variables during isometric, eccentric and concentric MVCs of elbow flexors in 36 volunteers.On average, isometric (364 ± 88 N) and eccentric (353 ± 74 N) MVCs were higher than concentric (290 ± 73 N) MVC (p < 0.001). Mean muscle fiber conduction velocity (CV) was highest during eccentric MVC (4.42 ± 0.49 m/s) than concentric (4.25 ± 0.49 m/s, p < 0.01) and isometric (4.14 ± 0.45 m/s, p < 0.001) MVCs. Furthermore, eccentric MVC showed lower sEMG amplitude at the largest elbow joint angles (120–170°) and higher CV at the smallest (70–150°) elbow joint angles (p < 0.05–0.001) than concentric MVC.The differences in CV and sEMG amplitude between the MVCs suggest that the control strategy of motor units differs between the contraction types during MVCs, and is dependent on the muscle length between the dynamic MVCs.  相似文献   

10.
The aim of this study was to examine the influence of exercise-induced muscle damage on elbow rhythmic movement (RM) performance and neural activity pattern and to investigate whether this influence is joint angle specific. Ten males performed an exercise of 50 maximal eccentric elbow flexions in isokinetic machine with duty cycle of 1:15. Maximal dynamic and isometric force tests (90°, 110° and 130° elbow angle) and both active and passive stretch reflex tests of elbow flexors were applied to the elbow joint. The intentional RM was performed in the horizontal plane at elbow angles; 60–120° (SA-RM), 80–140° (MA-RM) and 100–160° (LA-RM). All measurements together with the determination of muscle soreness, swelling, passive stiffness, serum creatine kinase were conducted before, immediately and 2 h as well as 2 days, 4 days, 6 days and 8 days post-exercise. Repeated maximal eccentric actions modified the RM trajectory symmetry acutely (SA-RM) and delayed (SA/MA/LA-RM) until the entire follow up of 8 days. Acutely lowered MA-RM peak velocity together with reduced activity of biceps brachii (BB) at every RM range, reflected a poorer acceleration and deceleration capacity of elbow flexors. A large acute drop of BB EMG burst amplitude together with parallel decrease in BB active stretch reflex amplitude, especially 2 h post-exercise, suggested an inhibitory effect originating most likely from groups III/IV mechano-nociceptors.  相似文献   

11.
We suggest short range stiffness (SRS) at the elbow joint as an alternative diagnostic for EMG to assess cocontraction.Elbow SRS is compared between obstetric brachial plexus lesion (OBPL) patients and healthy subjects (cross-sectional study design). Seven controls (median 28 years) and five patients (median 31 years) isometrically flexed and extended the elbow at rest and three additional torques [2.1, 4.3, 6.4 N m] while a fast stretch stimulus was applied. SRS was estimated in silico using a neuromechanical elbow model simulating the torque response from the imposed elbow angle.SRS was higher in patients (250 ± 36 N m/rad) than in controls (150 ± 21 N m/rad, p = 0.014), except for the rest condition. Higher elbow SRS suggested greater cocontraction in patients compared to controls. SRS is a promising mechanical alternative to assess cocontraction, which is a frequently encountered clinical problem in OBPL due to axonal misrouting.  相似文献   

12.
The objective of this study was to compare reaction time, joint torque, rate of torque development, and magnitude of neuromuscular activation of lower-extremity muscles in elderly female fallers and nonfallers. Participants included 11, elderly, female fallers (71.3 ± 5.4 years) and twelve nonfallers (71.3 ± 6.2 years) who completed a fall risk questionnaire. Then, maximal, voluntary, isometric contractions of the knee and ankle muscles were performed in reaction to a visual cue to determine joint torque, rate of torque development, reaction time, and nervous activation of agonists and antagonists. Results indicated that significantly more fallers reported “dizziness upon rising”, “use of balance altering medications”, “stress or depression”, “not enough sleep”, “arthritis in lower body”, “chronic pain in lower body”, and “tiring easily while walking” (all P < 0.05). Normalized dorsiflexion and plantarflexion strength scores (summation of peak torque, rate of torque development and impulse) were lower in fallers than in nonfallers (P < 0.05). When summed across lower-extremity muscle groups, fallers demonstrated 19% lower peak torque and 29% longer motor time (P < 0.05). In conclusion, comprehensive fall risk screening and prevention programs should address both neuromuscular and non-muscular factors, and, weakness of the ankle dorsiflexors and plantarflexors should be further studied as potential contributors to falls in older adults.  相似文献   

13.
The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6 ± SD 1.2 years old) and 17 older (61.7 ± 5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip = 26.3 ± 13.5%, knee = 78.4 ± 32.2%, ankle = 27.9 ± 14.1%) compared to methods which do not account for these variations (hip = 23.5 ± 11.7%, knee = 51.7 ± 15.0%, ankle = 20.7 ± 10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.  相似文献   

14.
The aim of this exploratory study was to verify whether the evaluation of quadriceps muscle weakness is influenced by the testing modality (isometric vs. isokinetic vs. isoinertial) and by the calculation method (within-subject vs. between-subject comparisons) in patients 4–8 months after total knee arthroplasty (TKA, n = 29) and total hip arthroplasty (THA, n = 30), and in healthy controls (n = 19). Maximal quadriceps strength was evaluated as (1) the maximal voluntary contraction (MVC) torque during an isometric contraction, (2) the peak torque during an isokinetic contraction, and (3) the one repetition maximum (1-RM) load during an isoinertial contraction. Muscle weakness was calculated as the difference between the involved and the uninvolved side (within-subject comparison) and as the difference between the involved side of patients and controls (between-subject comparison). Muscle weakness estimates were not significantly affected by the calculation method (within-subject vs. between-subject; P > 0.05), whereas a significant main effect of testing modality (P < 0.05) was observed. Isometric MVC torque provided smaller weakness estimates than isokinetic peak torque (P = 0.06) and isoinertial 1-RM load (P = 0.008), and the clinical occurrence of weakness (proportion of patients with large strength deficits) was also lower for MVC torque. These results have important implications for the evaluation of quadriceps muscle weakness in TKA and THA patients 4–8 months after surgery.  相似文献   

15.
Torque steadiness and low-frequency fatigue (LFF) were examined in the human triceps brachii after concentric or eccentric fatigue protocols. Healthy young males (n = 17) performed either concentric or eccentric elbow extensor contractions until the eccentric maximal voluntary torque decreased to 75% of pre-fatigue for both (concentric and eccentric) protocols. The number of concentric contractions was greater than the number of eccentric contractions needed to induce the same 25% decrease in eccentric MVC torque (52.2 ± 2.9 vs. 41.5 ± 2.1 for the concentric and eccentric protocols, respectively, p < .01). The extent of peripheral fatigue was ~12% greater after the concentric compared to the eccentric protocol (twitch amplitude), whereas LFF (increase in double pulse torque/single pulse torque), was similar across protocols. Steadiness, or the ability for a subject to hold a submaximal isometric contraction, was ~20 % more impaired during the Ecc protocol (p = .052). Similarly, the EMG activity required to hold the torque steady was nearly 20% greater after the eccentric compared to concentric protocol. These findings support that task dependent eccentric contractions preferentially alter CNS control during a precision based steadiness task.  相似文献   

16.
This study compared the effects of 6-week whole-body vibration (WBV) training programs with different frequency and peak-to-peak displacement settings on knee extensor muscle strength and power. The underlying mechanisms of the expected gains were also investigated. Thirty-two physically active male subjects were randomly assigned to a high-frequency/high peak-to-peak displacement group (HH; n = 12), a low-frequency/low peak-to-peak displacement group (LL; n = 10) or a sham training group (SHAM; n = 10). Maximal voluntary isometric, concentric and eccentric torque of the knee extensors, maximal voluntary isometric torque of the knee flexors, jump performance, voluntary muscle activation, and contractile properties of the knee extensors were assessed before and after the training period. Significant improvement in knee extensor eccentric voluntary torque (P < 0.01), knee flexor isometric voluntary torque (P < 0.05), and jump performance (P < 0.05) was observed only for HH group. Regardless of the group, knee extensor muscle contractile properties (P < 0.05) were enhanced. No modification was observed for voluntary muscle activation or electrical activity of agonist and antagonist muscles. We concluded that high-frequency/high peak-to-peak displacement was the most effective vibration setting to enhance knee extensor muscle strength and jump performance during a 6-week WBV training program and that these improvements were not mediated by central neural adaptations.  相似文献   

17.
Running exercises are frequently related to muscular injuries, which may be a result of muscular imbalance. The present study aimed to verify the effects of heavy-intensity continuous running exercise on the functional and conventional hamstrings:quadriceps ratios, and also in the knee flexors and extensors EMG activity in active non-athletic individuals. Sixteen active males performed maximal isokinetic concentric and eccentric knee flexions and extensions at 60° s?1 and 180° s?1. In another session, the same procedure was conducted after a continuous running exercise at 95% onset of blood lactate accumulation. Torque and electromyographic ratios were calculated from peak torque and integrated electromyographic activity (knee flexor and extensors). Creatine kinase was measured before and 24 h after running exercise. Eccentric torque (knee flexion and extension) decreased significantly after running only at 180° s?1 (p < 0.05). No differences were found for the conventional torque ratios (p > 0.05), however, the functional torque ratios at 180° s?1 decreased significantly after running (p < 0.05). No effects on the electromyographic activity and electromyographic ratios were found (p > 0.05). Creatine kinase increased slightly 24 h after running (p < 0.05). Heavy-intensity continuous running exercise decreased knee flexor and extensor eccentric torque, and functional torque ratios under fast velocities (180° s?1), probably as result of peripheral fatigue.  相似文献   

18.
ObjectiveThe objective of this study was to measure hamstring muscle eccentric and concentric strength in individuals with and without low back pain (LBP). Two composite scores for the relative balance of eccentric to concentric strength at the different movement velocities were calculated (the DEC and SEC), to determine whether or not self perceived pain, disability, or fear avoidance measures were associated with hamstring strength characteristics.DesignCross-sectional repeated measures design.SettingUniversity laboratory.ParticipantsFifteen individuals with chronic LBP and 15 matched controls.Main outcome measuresIsokinetic eccentric and concentric strength at 30° s?1 and 120° s?1. Composite scores (DEC and SEC) based on peak torque were calculated to evaluate the relationship between the different muscle actions across the test velocities. Self report measures included the Oswestry disability index, general health and well being, fear avoidance, and pain.ResultsEccentric/concentric strength ratio at 30° s?1 was higher for the LBP group (F(1,58) = 4.81, p = 0.032). The SEC was also higher for the LBP (F(1,58) = 5.97, p = 0.018). Fear avoidance beliefs and mental well-being were significantly associated with the SEC only in the LBP group (adjusted r2 = 0.26, (F(2,27) = 5.8, p = .008). For the control group both the DEC and SEC were associated with self report measures. Matched differences between groups’ for the SEC were best explained by fear avoidance beliefs about work (adjusted r2 = 0.12, F(1,28) = 5.1, p = 0.03).ConclusionReduced concentric relative to eccentric strength is best identified by the SEC. The SEC was significantly associated with impaired self report measures of fear avoidance and mental well being in individuals with LBP. Differences between groups for the SEC were best explained by fear avoidance beliefs about work.  相似文献   

19.
The purpose of the present study was to examine the patterns of responses for torque, electromyographic (EMG) amplitude, EMG mean power frequency (MPF), mechanomyographic (MMG) amplitude, and MMG MPF across 30 repeated maximal isometric (ISO) and concentric (CON) muscle actions of the leg extensors. Twelve female subjects (21.1 ± 1.4 yrs; 63.3 ± 7.4 kg) performed ISO and CON fatigue protocols with EMG and MMG signals recorded from the vastus lateralis. The relationships for torque, EMG amplitude, EMG MPF, MMG amplitude, and MMG MPF versus repetition number were examined using polynomial regression. The results indicated there were decreases (p < 0.05) across the ISO muscle actions for torque (r2 = 0.95), EMG amplitude (R2 = 0.44), EMG MPF (r2 = 0.62), and MMG MPF (r2 = 0.48), but no change in MMG amplitude (r2 = 0.07). In addition, there were decreases across the CON muscle actions for torque (R2 = 0.97), EMG amplitude (R2 = 0.46), EMG MPF (R2 = 0.86), MMG amplitude (R2 = 0.44), and MMG MPF (R2 = 0.80). Thus, the current findings suggested that the mechanisms of fatigue and motor control strategies used to modulate torque production were similar between maximal ISO and CON muscle actions.  相似文献   

20.
Sex-differences in the maximum rate of torque development (/dtmax) may be due to differences in maximum muscle strength, because higher torque values mathematically lead to higher values for the rate of change in torque. The rate of change in the isometric torque-time curve is often normalized to the isometric maximum voluntary contraction (MVC) to evaluate males and females on a relative scale. Normalization eliminates sex-differences in /dtmax in the lower limbs because males and females are more comparable (i.e., differences between the sexes are relatively small) with respect to both muscle size and strength. However, normalization fails to result in parody in /dtmax of the upper limb, leading to the idea that other factors may be involved. This study determined if sex-differences in /dtmax in the upper limb can be attributed to differences in isometric MVC and/or a neural variable related to rate of increase in muscle activation (Q30). Forty-six participants (23 males, 23 females) performed maximal isometric elbow flexion contractions, “as hard and as fast as possible”. Maximum torque (τmax), /dtmax, and the rate of increase in surface electromyographic (sEMG) activity (Q30) were assessed. Muscle plus bone cross-sectional area (M + B CSA) of the upper arm was calculated to estimate differences in muscle size, only for comparative purposes. Maximum strength (55.5%) and muscle size (41.9%) of the elbow flexors in males were much greater than that of females (p < 0.05). There was a large difference (61.2%) between males and females with respect to /dtmax that was reduced by statistical correction using an analysis of covariance (ANCOVA). The percent differences were reduced to 36.7% (p < 0.05) for τmax and 54.4% (p < 0.05) for Q30, but was nearly eliminated to 13.8% (p > 0.05) when both variables were used simultaneously as covariates. Since sex-differences in the upper limb /dtmax persist, additional neural or biomechanical factors may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号