首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of ethylene in shoot regeneration was investigated using transgenic Cucumis melo plants expressing an antisense 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene. ACC oxidase catalyses the last step of ethylene biosynthesis. Leaf and cotyledon explants from the transgenic plants exhibited low ACC oxidase activity and ethylene production, whereas the regeneration capacity of the tissues was greatly enhanced (3.5- and 2.8-fold, respectively) compared to untransformed control tissues. Addition of ethylene released by 50 or 100 μm 2-chloroethylphosphonic acid dramatically reduced the shoot regeneration rate of the transgenic tissues. The results clearly demonstrate that ethylene plays an important role in C. melo morphogenesis in vitro. Received: 23 April 1997 / Revision received: 9 June 1997 / Accepted: 2 July 1997  相似文献   

2.
The localization of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase was examined in suspension-cultured cells of tomato (Lycopersicon esculentum Mill.), using cell-fractionation techniques, followed by immunoblot analysis with monospecific antibodies raised against a tomato ACC oxidase expressed in Escherichia coli. When assayed in vivo, ACC oxidase had a low activity in untreated tomato cells but was strongly induced when the cells were supplied with its substrate, ACC. Immunoblots showed that this induction was accompanied by the accumulation of a single protein corresponding to ACC oxidase, with an apparent molecular mass (Mr) of 36 kDa. The level of this protein in induced cells, estimated by immunoblotting, was compared with that in protoplasts and vacuoles, and with that in various particulate and soluble fractions obtained by differential centrifugation of cell homogenates. It was found that the ACC oxidase antigen was absent from the vacuole, and that most of it was localized in the cytoplasm of the protoplasts without being associated with membranes. Measurements of ACC oxidase activity in preparations of protoplasts and vacuoles supported these results.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid We thank Martin Regenass (Friedrich Miescher-Institut, Basel, Switzerland) for maintaining the cell cultures and Georg Felix (Friedrich Miescher-Institut, Basel, Switzerland) for helpful discussions. This work was supported, in part, by the Swiss National Science Foundation, Grant 31-26492.89.  相似文献   

3.
4.
Leonard Edelman  Hans Kende 《Planta》1990,182(4):635-638
We determined the time course of increases in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity in ripening tomato (Lycopersicon esculentum (L.) Mill.) pericarp discs following wounding and treatment with 75 mM LiCl. Over the course of 24 h, we detected oscillations in the amount of enzyme activity from an initial peak at 6 h to a subsequent, even higher level at 18 h. In-vitro translation products derived from poly(A)+ RNAs isolated at various times of treatment and in-vivo-labeled proteins were immunoprecipitated using antibodies specific for ACC synthase. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography showed that wounding and treatment with LiCl induced an accumulation of translatable ACC-synthase-specific mRNAs. In addition, single, prominent bands were apparent for both in-vivo and in-vitro samples but their molecular masses differed. It appears that the in-vitro translation product is a polypeptide of 56 kDa while the in-vivo-labeled enzyme has a molecular mass of 47 kDa. The authors greatly appreciate the skilled technical assistance of Renate deZacks and Gail Robinson. This research was supported by the National Science Foundation through Grant No. DCB-8718873 and by the Department of Energy through Contract No. DE-AC02-76ER-01338.  相似文献   

5.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

6.
A partially purified preparation of 1-aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) from tomato (Lycopersicon esculentum (Mill.) fruit tissue was used to generate monoclonal antibodies (MAb) specific for the two different MAbs yielded a 50-kDa polypeptide as shown by sodium dodecylsulfate-polyacrylamide gel electrophoresis. An enzyme-linked immunosorbent assay (ELISA) capable of detecting <1 ng of antigen was developed. The ELISA system was used to demonstrate that two of the MAbs recognized different epitopes on the ACC-synthase protein. Wound-induced increases in ACC-synthase activity in tomato fruit tissue were correlated with changes in ELISA-detectable protein. In-vivo labeling of wounded tissue with [35S]methionine followed by extraction and immunopurification in the presence of various protease inhibitors yielded one major radioactive band of 50 kDa molecular mass. Pulse labeling with [35S]methionine at various times after wounding indicated that the wound-induced increase in ACC-synthase activity involved de-novo synthesis of a rapidly turning over 50-kDa polypeptide.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - ELISA enzyme-linked immunosorbent assay - MAb monoclonal antibody - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

7.
The subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase (ACC oxidase), an enzyme involved in the biosynthesis of ethylene, has been studied in ripening fruits of tomato (Lycopersicum esculentum Mill.). Two types of antibody have been raised against (i) a synthetic peptide derived from the reconstructed pTOM13 clone (pRC13), a tomato cDNA encoding ACC oxidase, and considered as a suitable epitope by secondary-structure predictions; and (ii) a fusion protein overproduced in Escherichia coli expressing the pRC13 cDNA. Immunoblot analysis showed that, when purified by antigen affinity chromatography, both types of antibody recognized a single band corresponding to ACC oxidase. Superimposition of Calcofluor white with immunofluorescence labeling, analysed by optical microscopy, indicated that ACC oxidase is located at the cell wall in the pericarp of breaker tomato and climacteric apple (Malus × domestica Borkh.) fruit. The apoplasmic location of the enzyme was also demonstrated by the observation of immunogold-labeled antibodies in this region by both optical and electron microscopy. Transgenic tomato fruits in which ACC-oxidase gene expression was inhibited by an antisense gene exhibited a considerable reduction of labeling. Immunocytological controls made with pre-immune serum or with antibodies pre-absorbed on their corresponding antigens gave no staining. The discrepancy between these findings and the targeting of the protein predicted from sequences of ACC-oxidase cDNA clones isolated so far is discussed.  相似文献   

8.
9.
Jörg R. Konze  Hans Kende 《Planta》1979,146(3):293-301
Homogenates of etiolated pea (Pisum sativum L.) shoots formed ethylene upon incubation with 1-aminocyclopropane-1-carboxylic acid (ACC). In-vitro ethylene formation was not dependent upon prior treatment of the tissue with indole-3-acetic acid. When homogenates were passed through a Sephadex column, the excluded, high-molecular-weight fraction lost much of its ethylene-synthesizing capacity. This activity was largely restored when a heat-stable, low-molecular-weight factor, which was retarded on the Sephadex column, was added back to the high-molecular-weight fraction. The ethylene-synthesizing system appeared to be associated, at least in part, with the particulate fraction of the pea homogenate. Like ethylene synthesis in vivo, cell-free ethylene formation from ACC was oxygen dependent and inhibited by ethylenediamine tetraacetic acid, n-propyl gallate, cyanide, azide, CoCl3, and incubation at 40°C. It was also inhibited by catalase. In-vitro ethylene synthesis could only be saturated at very high ACC concentrations, if at all. Ethylene production in pea homogenates, and perhaps also in intact tissue, may be the result of the action of an enzyme that needs a heat-stable cofactor and has a very low affinity for its substrate, ACC, or it may be the result of a chemical reaction between ACC and the product of an enzyme reaction. Homogenates of etiolated pea shoots also formed ethylene with 2-keto-4-mercaptomethyl butyrate (KMB) as substrate. However, the mechanism by which KMB is converted to ethylene appears to be different from that by which ACC is converted.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - KMB 2-keto-4-mercaptomethyl butyrate - SAM S-adenosylmethionine  相似文献   

10.
Pan G  Lou C 《Journal of plant physiology》2008,165(11):1204-1213
Mulberry (Morus alba) is an important crop tree involved in sericulture and pharmaceuticals. To further understand the development and the environmental adaptability mechanism of mulberry, a cDNA of the gene MaACO1 encoding 1-aminocyclopropane-1-carboxylate oxidase was isolated from mulberry. This was used to investigate stress-responsive expression in mulberry. Developmental expression of ACC oxidase in mulberry leaves and spatial expression in mulberry flowers were also investigated. Damage and low-temperature treatment promoted the expression of MaACO1 in mulberry. In leaves, expression of the MaACO1 gene increased in cotyledons and the lowest leaves with leaf development, but showed reduced levels in emerging leaves. In flowers, the pollinated stigma showed the highest expression level, followed by the unpollinated stigma, ovary, and immature flowers. These results suggest that high MaACO1 expression may be predominantly associated with tissue aging or senescence in mulberry.  相似文献   

11.
The cofactor of enzymatic, 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation was concentrated on cation exchange columns. When chelators of cations were added to the homogenates, cofactor activity was lost. Cofactor fractions were partly resistant to oxidation at 600° C. Mn2+ substituted for the cofactor in ethylene formation from 1-aminocyclopropane-1-carboxylic acid by a protein fraction isolated from etiolated pea shoots. In addition, Mn2+ enhanced the stimulatory effect of the concentrated cofactor. The elution volume for the cofactor on a Sephadex G-25 column was lower than that of MnCl2. In paper electrophoresis the cofactor migrated to the cathode at pH 10.8 and 2.2. The RF of cofactor on cellulose plates developed in butanol: acetic acid: H2O was 0.4. After cellulose chromatography, cofactor activity had to be reconstituted by the addition of MnCl2. Chelators, anti-oxidants, and catalase were inhibitors of Mn2+-cofactor-dependent ethylene formation. The protein necessary for 1-aminocyclopropane-1-carboxylic acid dependent ethylene formation in vitro was seperated from 95–98% of the total protein in homogenates by DE-52 cellulose chromatography and (NH4)2SO4-fractionation.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EDTA ethylenediaminetetraacetic acid - DDTC diethyldithiocarbamate  相似文献   

12.
1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) purified from apple (Malus sylvestris Mill.) fruit was subjected to trypsin digestion. Following separation by reversed-phase high-pressure liquid chromatography, ten tryptic peptides were sequenced. Based on the sequences of three tryptic peptides, three sets of mixed oligonucleotide probes were synthesized and used to screen a plasmid cDNA library prepared from poly(A)+ RNA of ripe apple fruit. A 1.5-kb (kilobase) cDNA clone which hybridized to all three probes were isolated. The clone contained an open reading frame of 1214 base pairs (bp) encoding a sequence of 404 amino acids. While the polyadenine tail at the 3-end was intact, it lacked a portion of sequence at the 5-end. Using the RNA-based polymerase chain reaction, an additional sequence of 148 bp was obtained at the 5-end. Thus, 1362 bp were sequenced and they encode 454 amino acids. The deduced amino-acid sequence contained peptide sequences corresponding to all ten tryptic fragments, confirming the identity of the cDNA clone. Comparison of the deduced amino-acid sequence between ACC synthase from apple fruit and those from tomato (Lycopersicon esculentum Mill.) and winter squash (Cucurbita maxima Duch.) fruits demonstrated the presence of seven highly conserved regions, including the previously identified region for the active site. The size of the translation product of ACC-synthase mRNA was similar to that of the mature protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that apple ACC-synthase undergoes only minor, if any, post-translational proteolytic processing. Analysis of ACC-synthase mRNA by in-vitro translation-immunoprecipitation, and by Northern blotting indicates that the ACC-synthase mRNA was undetectable in unripe fruit, but was accumulated massively during the ripening proccess. These data demonstrate that the expression of the ACC-synthase gene is developmentally regulated.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AdoMet S-adenosyl-l-methionine - HPLC high-pressure liquid chromatography - kDa kilodalton - kb kilobase - mAb monoclonal antibody - Met methionine - PCR polymerase chain reaction - poly(A)+ RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis This work was supported by grants DCB-9004129 and INT-8915155 from the National Science Foundation.  相似文献   

13.
The objective of this research was to study the in-vitro morphogenetic pattern of corn (Zea mays L.) shoot tips excised from aseptically-grown seedlings, and of expiants of axillary shoot buds, immature tassels and ears (staminate and pistillate inflorescences) obtained from greenhouse-grown corn plants. The seedling shoot tips and immature ears first regenerated clumps of multiple shoots within four weeks of culture on Murashige and Skoog (MS) basal medium supplemented with 500 mg/L casein hydrolysate (CH) and 9.0 M N6-benzyladenine (BA). Multiple shoot clumps were also differentiated from spikelets of immature tassels cultured on MS medium containing 500 mg/L CH, 4.5 M BA and 0.45 M 2,4-dichlorophenoxy acetic acid (2,4-D). All these multiple shoot clumps in turn differentiated clusters of ears after further four subcultures at four-week intervals under light on MS medium supplemented with 500 mg/L CH and 2.25, 4.5, 9.0 or 18 M BA. Axillary shoot buds readily differentiated clusters of ears within four weeks of the initial culture on these media. Secondary and tertiary ear clusters were initiated following subculture of primary ears on MS medium containing 500 mg/L CH and 4.5 or 9.0 M BA. Most of the ear primordia developed into ears with well-developed ovaries and styles on subculture on MS medium containing 500 mg/L CH and 1.0 M BA. Corn kernels were obtained after pollination of in-vitro-formed ears with pollens collected from greenhouse-grown corn. These kernels germinated in vitro and developed into mature corn plants in the greenhouse. Clusters of tassels were also differentiated in darkness from the multiple shoot clumps after six months successive subcultures but the spikelet primordia of tassels failed to develop fully under the in-vitro conditions tested. Somatic embryos arose directly from spikelet primordia of young tassels or ears on MS medium containing 500 mg/L CH and 4.5 M 2,4-D, or indirectly from calli derived from spikelets of young tassels and ears on MS medium containing 500 mg/L CH and 9.0 M 2.4-D.Abbreviations BA N6-benzyladenine - CH casein hydrolysate - 2,4-D 2,4-dichlorophenoxyacetic acid - IBA indole-3-butyric acid - MS Murashige and Skoog (basal medium) Heng Zhong is a Rockefeller Foundation Fellow on leave from the Institute of Botany, Academia Sinica, Beijing, P.R. China. This work was supported by a grant from the MidWest Plant Biotechnology Consortium and U.S.-A.I.D. grant No. DAN-4197-A-00-1126-00 to M.B. Sticklen. Thanks are due to Illinois Foundation Seeds, Champaign, USA for the supply of Honey N Pearl sweetcorn seeds and the Services of Center for Electron Optics, Michigan State University, for the electromicroscopic work as related to this publication.  相似文献   

14.
As part of our studies on the role of auxin in regulating the ethylenebiosynthesis during fruit ripening, in this paper we describe the functionalproperties of the ACC oxidase activity extracted from transgenic tomato(Lycopersicum esculentum Mill. cv. Ailsa craig)overexpressing the tryptophan monooxygenase or iaaM protein fromAgrobacterium tumefaciens that increases the auxin levels.Maximal activity was recovered by extracting the enzyme at pH 8.0 from fruitspicked three days after the onset of the colour change. The enzyme exhibits ahalf-life of 85 min, two relative maxima at 30 and 38°C, an optimum pH of 7.9 and an apparent Km forACC of 118 M. Our results also show the first evidence of anallosteric type kinetic of the ACC oxidase activity with respect to itscosubstrate ascorbate, with an apparent Km of 12.5mM,estimated as the concentration which gave 50% Vmax.  相似文献   

15.
Summary The promotive effect of ethylene inhibitors (Els), i.e. AgNO3 and aminoethoxyvinylglycine (AVG) on de novo shoot regeneration from cultured cotyledonary explants of Brassica campestris ssp. pekinensis cv. Shantung in relation to polyamines (PAs) was investigated. The endogenous levels of free putrescine and spermidine in the explant decreased sharply after 1–3 days of culture, whereas endogenous spermine increased, irrespective of the absence or presence of Els. AgNO3 at 30 M did not affect endogenous PAs during two weeks of culture. In contrast, explants grown on medium containing 5 M AVG produced higher levels of free putrescine and spermine which increased rapidly after three days and reached a peak at 10 days. An exogenous application of 5 mM putrescine also resulted in a similar surge of endogenous free spermine of the explant. More strikingly, shoot regeneration from explants grown in the presence of 1–20 mM putrescine, 0.1–2.5 mM spermidine, or 0.1–1 mM spermine was enhanced after three weeks of culture. However, exogenous PAs generally did not affect ethylene production, and endogenous levels of 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC of the explant. This study shows the PA requirement for shoot regeneration from cotyledons of B. campestris ssp. pekinensis in vitro, and also indicates that the promotive effect of PAs on regeneration may not be due to an inhibition of ethylene biosynthesis.Abbreviations PAs polyamines - AVG aminoethoxyvinylglycine - SAM S-adenosylmethionine - ACC 1-aminocyclopropane-1-carboxylate - Els ethylene inhibitors  相似文献   

16.
The enzyme which converts 1-aminocyclo-propane-1-carboxylic acid (ACC) into ethylene, ACC oxidase, has been isolated from apple fruits (Malus x domestica Borkh. cv. Golden Delicious), and for the first time stabilized in vitro by 1,10-phenanthroline and purified 170-fold to homogeneity in a five-step procedure. The sodium dodecyl sulfate-denatured and native proteins have similar molecular weights (approx. 40 kDa) indicating that the enzyme is active in its monomeric form. Antibodies raised against a recombinant ACC oxidase over-produced in Escherichia coli from a tomato cDNA recognise the apple-fruit enzyme with high specificity in both crude extracts and purified form. Glycosylation appears to be absent because of (i) the lack of reactivity towards a mixture of seven different biotinylated lectins and (ii) the absence of N-linked substitution at a potential glycosylation site, in a sequenced peptide. Phenylhydrazine and 2-methyl-1-2-dipyridyl propane do not inhibit activity, indicating that ACC oxidase is not a prosthetic-heme iron protein. The partial amino-acid sequence of the native protein has strong homology to the predicted protein of a tomato fruit cDNA demonstrated to encode ACC oxidase.  相似文献   

17.
Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl2, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl2. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 μM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 μM TDZ plus 50 μM CoCl2 reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl2 either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression.  相似文献   

18.
White light inhibits the conversion of 1-amino-cyclopropane-1-carboxylic acid (ACC) in discs of green leaves of tobacco (Nicotiana tabacum L.) and segments of oat (Avena sativa L.) leaves by from 60 to 90%. Etiolated oat leaves do not show this effect. The general nature of the effect is shown by its presence in both a mono- and a dicotyledon. Since the leaves have been grown and pre-incubated in light, yet can produce from 2 to 9 times as much ethylene in the dark as in the light, it follows that the light inhibition is fully reversible. The inhibition by light is about equal to that exerted in the dark by CoCl2; it can be partly reversed by dithiothreitol and completely by mercaptoethanol. Thus the light is probably acting, via the photosynthetic system, on the SH group(s) of the enzyme system converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

19.
The regulation of gravistimulation-induced ethylene production and its role in gravitropic bending was studied in Antirrhinum majus L. cut flower stems. Gravistimulation increased ethylene production in both lower and upper halves of the stems with much higher levels observed in the lower half. Expression patterns of three different 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) genes, an ACC oxidase (ACO) and an ethylene receptor (ETR/ERS homolog) gene were studied in the bending zone of gravistimulated stems and in excised stem sections following treatment with different chemicals. One of the ACS genes (Am-ACS3) was abundantly expressed in the bending zone cortex at the lower side of the stems within 2 h of gravistimulation. Am-ACS3 was not expressed in vertical stems or in other parts of (gravistimulated) stems, leaves or flowers. Am-ACS3 was strongly induced by indole-3-acetic acid (IAA) but not responsive to ethylene. The Am-ACS3 expression pattern strongly suggests that Am-ACS3 is responsible for the observed differential ethylene production in gravistimulated stems; its responsiveness to IAA suggests that Am-ACS3 expression reflects changes in auxin signalling. Am-ACS1 also showed increased expression in gravistimulated and IAA-treated stems although to a much lesser extent than Am-ACS3. In contrast to Am-ACS3, Am-ACS1 was also expressed in non-bending regions of vertical and gravistimulated stems and in leaves, and Am-ACS1 expression was not confined to the lower side cortex but evenly distributed over the diameter of the stem. Am-ACO and Am-ETR/ERS expression was increased in both the lower and upper halves of gravistimulated stems. Expression of both Am-ACO and Am-ETR/ERS was responsive to ethylene, suggesting regulation by IAA-dependent differential ethylene production. Am-ACO expression and in vivo ACO activity, in addition, were induced by IAA, independent of the IAA-induced ethylene. IAA-induced growth of vertical stem sections and bending of gravistimulated flowering stems were little affected by ethylene or 1-methylcyclopropene treatments, indicating that the differential ethylene production plays no pivotal role in the kinetics of gravitropic bending.  相似文献   

20.
The biosynthetic basis for the high rates of ethylene production by the apical region of etiolated pea (Pisum sativum L.) seedlings was investigated. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was quantified in extracts of various regions of seedlings by measuring isotopic dilution of a 2H-labelled internal standard using selected-ion-monitoring gas chromatography/mass spectrometry. The ACC levels in the apical hook and leaves were much higher than in the expanded internodes of the epicotyl. The capacity of excised tissue sections to convert exogenous ACC to ethylene was also much greater in the apical region, reflecting the distribution of soluble protein in the epicotyl.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - FW fresh weight - GC/MS coupled gas chromatography/mass spectrometry - HPLC high-performance liquid chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号