首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leccinum scabrum sporocarps and associated topsoils from two areas in Poland have been characterized for contents and bioconcentration potential of Ag, Al, Ba, Ca, Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr and Zn. Topsoil and fruitbody element composition varied between the two study sites, most likely as a result of local soil geochemistry. Element content of the labile fraction in topsoil from both sites followed the ‘pseudo‐total’ fraction and median values (mg kg?1 dry matter) were: K 380 and 340, Mg 760 and 840, P 1100 and 920, Al 3800 and 8100, Ag 0.31 and 0.28, Ba 28 and 37, Ca 920 and 790, Cd 0.23 and 0.23, Co 2.0 and 1.7, Cu 3.2 and 3.6, Fe 2800 and 6300, Mn 280 and 180, Na 99 and 110, Ni 7.8 and 8.8, Pb 12 and 18, Rb 1.3 and 2.1, Sr 4.8 and 4.0 and Zn 22 and 19, respectively. Only for some elements such as K, Mg, Al, Ag, Ca, Co, Mn, Na, Ni, Sr and Zn we found concentration differences between the two study sites for the caps of sporocarps. With the exception of Al, Mn, Na and Pb, stipes showed a similar tendency. Caps had a higher concentration of K, Rb, P, Mg, Al, Ag, Cu, Fe, Zn, Cd, Pb and Ni compared to stipes, while Na, Ba and Sr contents were higher in stipes. The comparison of soil and fruitbody concentrations indicates that L. scabrum bioconcentrate some elements while others are bioexcluded.  相似文献   

2.
《Fungal biology》2020,124(3-4):174-182
There is growing evidence that mushrooms (fruiting bodies) can be suitable for biogeochemical prospecting for minerals and as indicators of heavy metal and radioactive contaminants in the terrestrial environment. Apart from the nutritional aspect, knowledge of accumulation dynamics and distribution of elements in fruiting bodies, from emergence to senescence, is essential as is standardization when choosing mushroom species as potential bioindicators and for monitoring purposes. We studied the effect of fruitbody developmental stage on the contents of the elements (Li, K, V, Cr, Mn, Mg, Co, Ni, Cu, Zn, As, Rb, Sr, Ag, Al, Cd, Sb, Cs, Ba, Pb, Tl and U) in the individual parts of the Amanita muscaria fruiting body. Elements such as K, Mg, Mn, Ni, Co, Cu, Zn and Se remained similar throughout all developmental stages studied, however for K, differences occurred in the values of caps and stipes, as expressed by the cap to stipe concentration quotient (index QC/S). The other elements quantified, i.e., Li, V, Cr, As, Rb, Sr, Ag, Al, Cd, Sb, Cs, Ba, Pb, Tl and U are considered as nonessential or toxic (with the exception of V in A. muscaria). Their accumulation in the fruiting bodies and their distribution between cap and stipe did not show a uniform pattern. Pb, Sb, Tl, Ba, Sr, Li, Rb and Cs decreased with increasing maturity of the fruitbodies, implying that translocation, distribution and accumulation in stipes and caps was not a continuous process, while V, Cr, As, Ag, Cd, and U remained at the same concentration, similarly to the essential elements. Our results for A. muscaria confirm that elemental distribution in different parts of fruiting bodies is variable for each element and may change during maturation. Soil properties, species specificity and the pattern of fruitbody development may all contribute to the various types of elemental distribution and suggest that the results for one species in one location may have only limited potential for generalization.  相似文献   

3.
Fifty-four rare elements were tested for their effects on the nicotine level of tobacco (Nicotiana tabacum L.) plants grown in solution culture. Be, Cu, Pd, Pt, and Sm definitely increased nicotine yield (over 25%), whereas Bi, Co, Ho, Pb, Ni, Rb, Ag, Tl, Sn, U. V. and Zr definitely decreased nicotine yield. Cs, Er, Li, Rh, Ru, Se, Sr, Ti, and Yb possibly increased (less than 25%) nicotine yield, whereas As, Ce, Cr, Dy, Gd, I, Mo, Nd, Re, Ta, and Th possibly decreased nicotine yield. Other elements including Al, Ge, Au, Hf, In, Ir, La, Lu, Hg, Os, Pr, Sc, Te, Tb, Tm, W, and Zn showed no significant effects.  相似文献   

4.
The effect of age and gender on 59 trace-element contents in rib bone of 80 apparently healthy 15–55-year-old women (n?=?38) and men (n?=?42) was investigated by inductively coupled plasma mass spectrometry. Mean values (M?±?SΕΜ) for the mass fraction (milligrams per kilogram, on dry-weight basis) of Ba, Bi, Cd, Ce, Cu, Dy, Er, Gd, La, Li, Mn, Mo, Nd, Pb, Pr, Rb, Sm, Sr, Tb, Tl, U, Yb, and Zn for both female and male taken together were: Ba 2.5?±?0.2, Bi 0.015?±?0.002, Cd 0.044?±?0.005, Ce 0.029?±?0.002, Cu 1.05?±?0.06, Dy 0.0020?±?0.0003, Er 0.0011?±?0.0002, Gd 0.0015?±?0.0001, La 0.020?±?0.002, Li 0.040?±?0.002, Mn 0.354?±?0.004, Mo 0.052?±?0.006, Nd 0.011?±?0.001, Pb 2.24?±?0.14, Pr 0.0032?±?0.0004, Rb 1.51?±?0.06, Sm 0.0014?±?0.0001, Sr 291?±?20, Tb 0.00041?±?0.00005, Tl 0.00050?±?0.00003, U 0.0013?±?0.0001, Yb 0.00072?±?0.00007, and Zn 92.8?±?1.5, respectively. The upper limit of mean contents of Ag, Al, B, Be, Br, Cr, Cs, Hg, Ho, Lu, Ni, Sb, Te, Th, Ti, Tm, and Y were: Ag?≤?0.011, Al?≤?7.2, B?≤?0.65, Be?≤?0.0032, Br?≤?3.9, Cr?≤?0.25, Cs?≤?0.0077, Hg?≤?0.018, Ho?≤?0.00053, Lu?≤?0.00024, Ni?≤?1.05, Sb?≤?0.0096, Te?≤?0.0057, Th?≤?0.0030, Ti?≤?2.8, Tm?≤?0.00006, and Y?≤?0.0047, respectively. In all bone samples, the contents of As, Au, Co, Eu, Ga, Hf, Ir, Nb, Pd, Pt, Re, Rh, Sc, Se, Sn, Ta, V, W, and Zr were under detection limits. The Ce, Dy, Er, Gd, La, Nd, Pr, Sm, Tb, and Yb contents increase with age. Higher Sr mass fraction is typical of female rib as compared to those in male bone.  相似文献   

5.
Risk and essential elements were determined in fruiting bodies of wild growing edible mushrooms Chlorophyllum rhacodes, Suillus grevillei, Imleria badia, and Xerocomellus chrysenteron collected in an unpolluted site in South Bohemia, the Czech Republic. The elements were also determined in underlying soils and the bioconcentration factors were calculated. The analyses revealed that C. rhacodes accumulated Ag, Cu, Rb, Se, Zn, As, Cd, and Tl. On the other hand, S. grevillei accumulated Cd, Rb, Ag, Se, and Cs. I. badia and X. chrysenteron strongly accumulated Rb, Cs, and Ag; these species showed the ability to accumulate Cu and Zn as well. Contents of detrimental CrVI were in all cases below the quantification limit (0.003 mg kg?1 dry matter). Studied mushroom species (mainly C. rhacodes) accumulated some toxic elements. However, no considerable effect on human health is expected since they are usually consumed as a delicacy and do not represent a major component of diet.  相似文献   

6.
Concentrations of the 18 elements, barium (Ba), beryllium (Be), bismuth (Bi), calcium (Ca), cadmium (Cd), cesium (Cs), copper (Cu), lanthanum (La), lithium (Li), magnesium (Mg), molybdenum (Mo), lead (Pb), rubidium (Rb), antimony (Sb), tin (Sn), strontium (Sr), thallium (Tl), and zinc (Zn), were determined in the synovial fluids of osteoarthritic knee joints and in the corresponding sera of 16 patients by inductively coupled plasma-mass spectrometry. Knee-joint effusions have lower elemental concentrations than their corresponding sera. For the essential elements Ca, Cu, Mg, and Zn and for the nonessential and toxic elements Ba, Be, Bi, La, and Sb, this difference was highly significant. Strong positive correlations between concentrations in effusions and sera for the essential elements Cu and Mg and for the nonessential elements Cs, Li, Rb, and Sr could be established. The grade of localized hyperperfusion of the knee region in the blood pool phase of 99mTc HDP bone scan indicating inflammation did not correlate with any elemental concentration determined. Deceased.  相似文献   

7.
A survey of trace elements in pteridophytes   总被引:2,自引:0,他引:2  
Concentration of 11 trace elements (Ca, Sc, Cr, Fe, Co, Zn, Rb, Cs, Ba, La, and Ce) in 96 pteridophytes (fern and fern ally species) was determined by instrumental neutron activation analysis to evaluate a concentration range for each element and also to find species characteristic in the uptake of trace elements. Asplenium trichomanes was found to accumulate Sc, Cr, and Co to the highest concentrations among 96 pteridophytes. The highest concentration of Ca and Zn was observed for Asplenium obscurum. The other Pteridophytes exhibited only one element whose concentration was the highest. A positive correlation was found between the concentrations of Fe and Sc, and also between the concentrations of Cr and Co. The remarkable accumulation of lanthanides (La and Ce) was observed mainly in diversifying genera (Polystichum and Dryopteris in Dryopteridaceae, Diplazium in Woodsiaceae, and Asplenium in Aspleniaceae).  相似文献   

8.
Reptiles are an important, and often protected, component of many ecosystems but have rarely been fully considered within ecological risk assessments (ERA) due to a paucity of data on contaminant uptake and effects. This paper presents a meta-analysis of literature-derived environmental media (soil and water) to whole-body concentration ratios (CRs) for predicting the transfer of 35 elements (Am, As, B, Ba, Ca, Cd, Ce, Cm, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Po, Pu, Ra, Rb, Sb, Se, Sr, Th, U, V, Y, Zn, Zr) to reptiles in freshwater ecosystems and 15 elements (Am, C, Cs, Cu, K, Mn, Ni, Pb, Po, Pu, Sr, Tc, Th, U, Zn) to reptiles in terrestrial ecosystems. These reptile CRs are compared with CRs for other vertebrate groups. Tissue distribution data are also presented along with data on the fractional mass of bone, kidney, liver and muscle in reptiles. Although the data were originally collected for use in radiation dose assessments, many of the CR data presented in this paper will also be useful for chemical ERA and for the assessments of dietary transfer in humans for whom reptiles constitute an important component of the diet, such as in Australian aboriginal communities.  相似文献   

9.
The fruit mineral contents (K, Ca, Ba, Br, Zn, Co, Cr, Fe, Na, Rb, Cs, and Sr) of four native and two exotic naturalized shrubs growing in different areas of the Andean Patagonian region of Argentina were investigated. Native species Berberis darwinii, Berberis microphylla (Berberidaceae), Aristotelia chilensis (Elaeocarpaceae) and Ribes magellanicum (Saxifragaceae) produce small berries while the fruits of the exotic species Rosa rubiginosa and Rosa canina (Rosaceae) are aggregates of aquenes. They are used to prepare jams, tea, liquors, and ice creams. Native shrub fruits had higher content of Br, Zn, Co, Cr, Fe, Mo, and Na than those of the exotic naturalized species. Rosa species showed the highest contents of Ca and Ba in their fruits (the mean content doubled those of the native plant fruits). The fruit nutrient content found in the studied species was similar or higher than other values reported for fruits of temperate and tropical species in the world.  相似文献   

10.
Summary Absorption and accumulation of alkali (Li, Na, K, Rb, Cs) and alkaline earth (Mg, Ca, Sr, Ba) metals were investigated as taxonomic characteristics (in 62 plant species). Leaf and soil samples were collected from 9 sites in temperature forest in Japan and the above mentioned elements were analyzed. Considerable differences were found among species in their ability to accumulate alkali and alkaline earth metals. Very high concentrations of Li (45 ppm, D.W.), K (37×103 ppm), Rb (159 ppm) and Cs (8.2 ppm) were detected inLastrea japonica which were about 412, 12, 27 and 6 times higher than those of the species with the lowest concentrations. Na content was high inAcer micranthum (358 ppm) which was 16 times higher than species with the lowest concentration. Other species containing high levels of alkali metals wereHydrangea macrophylla, Struthiopteris niponica, Clethra barbinervis. Mean discrimination ratio (D.R.) for all investigated plant species for Li, Na, Rb, and Cs to K were 1.7, 0.44, 0.9 and 1.8 respectively. High concentrations of alkaline earth metals Ca (36×103 ppm), Sr (345 ppm), and Ba (241 ppm) were found in the leaves ofHydrangea paniculata which were about 31, 84, and 72 times higher than those for the species with the lowest concentration. Mg was very high inStruthiopteris niponica (83×102 ppm). Other species with high concentrations of alkaline earth metals belonged to the genus Viburnum. Mean D.Rs. for Mg, Sr, and Bavs Ca were 1.0, 0.7 and 0.08. Principal component analysis of interrelationships between the mineral content in leaf tissues indicated that these elements could be classified into 2 groups with respect to their accumulation behavior in plants. The alkali metals K, Li, Rb, and Cs behaved similarly in their accumulation in leaves but Na behaved independently. Alkaline earth metals Ca, Mg, Sr, and Ba were also found to behave similarly in their accumulation. Factors scores of 1st and 2nd components revealed three groups of plant species: alkaliphilic, alkaline earthphilic, and neutral (non-accumulators).  相似文献   

11.
In order to determine any possible relation between chemical composition of a person’s blood to formation of dental caries, whole blood was analyzed for 35 inorganic elements (Si, Al, Fe, Ca, Mg, K, Mn, Ti, P, Li, Be, B, V, Cr, Co, Ni, Cu, Zn, As, Sr, Y, Nb, Mo, Ag, Cd, Sn, Sb, Ba, La, Ce, W, Pb, Bi, Zr, and F) in the 15 people having sound teeth as well as an equal number of those having multiple caries. The results showed the absence of 13 elements (Si, Al, Mn, Ti, Be, Co, As, Y, Cd, Ba, La, Ce, and Zr) in the blood of both groups. Of the remaining 22 elements, the results of only seven elements (Fe, P, B, V, Sr, Sn, and F) were significantly different between the two groups. The most remarkable finding of this study was significantly decreased amount of phosphorus, strontium, and fluorine and perhaps increased boron in the blood of persons with caries.  相似文献   

12.
The well-known, extreme sensitivity of algae towards Cu++ ions prompted a systematic investigation of the tolerance ofChlorella vulgaris for both metallic (49) and non-metallic (7) ions. With thirty metals forming weak bases, pH effects were to some extent super-imposed on the toxic effects of the metal ions themselves. With the elements U, Zr, V and Sb, oxy-compounds had to be used. The elements Mo, W and Bi were tested as components of anions.From the metals that form strong bases, the salts of Na, K, Rb, Ca, Sr and Mg were tolerated in high concentrations; the maximum values of these ranged from 0.11 – 0.98 g at/liter. Notwithstanding some unavoidable simplifications of the experimental technique, it could be concluded from the results that in four intermetal groups, arranged according to I.U.P.A.C., toxicity has a definite tendency to increase with increasing atomic number. This held for the series: Na, K, Rb, Cs; Mg, Ca, Sr, Ba; Zn, Cd, Hg; Al, In, Tl. In like manner, the rare earths were found to be more toxic than the alkaline earth metals.Co, Ni and Cu completely inhibit growth at very low concentrations ranging from 4.2×10–6–2×10–5 g at/liter; in view of the relatively low atomic numbers of these metals, the toxicity must be regarded as specific (algotoxicity).Among the non-metals, Sb and As proved highly toxic. Fluoride ions were considerably more toxic than chloride and bromide ions.  相似文献   

13.
There is little information on in situ distribution of nutrient elements in N2-fixing nodules. The aim of this study was to quantify elemental distribution in tissue components of N2-fixing nodules harvested from Psoralea pinnata plants grown naturally in wetland and upland conditions in the Cape Fynbos. The data obtained from particle-induced X-ray emission revealed the occurrence of 20 elements (Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, Mo and Ba) in nodule components. Although, in upland plants, the concentrations of S, Fe, Si, Mn and Cu showed a steady increase from the middle cortex to the medulla region of P. pinnata nodules, in wetland plants, only S, Fe and Mn showed an increase in concentration from the middle cortex to the bacteria-infected medulla of P. pinnata nodules. By contrast, the concentrations of Cl, K, Ca, Zn and Sr decreased from middle cortex to nodule medulla. The alkaline earth, alkali and transition elements Rb, Sr, Y and Zr, never before reported in N2-fixing nodules, were found to occur in root nodules of P. pinnata plants grown in both wetland and upland conditions.  相似文献   

14.
Slices of cat brains that had been fixed in 10% aqueous formalin for various periods from 2 days to over a year were subjected to different types of chromation prior to impregnation with silver nitrate. Acid solutions of Al, Ba, Ca, Cd, Ce, Co, Cu, Fe, K, Ni, Sr and Zn chromates were tested for usefulness as chromating agents. The chromates of Cd, Co, K, Sr and Zn were found to be best; Ca, Ce and Ni gave positive results, but Al, Ba, Cu and Fe were quite unsatisfactory. Acetic acid was somewhat preferable to formic as the acidifying agent. A formula consisting of potassium chromate, 5% aq., 100 ml. and glacial acetic acid 6-8 ml. was found to be similar in action to comparable mixtures that contained the chromate of Cd, Co, Sr or Zn. Brain slices chromated 24-48 hours in these acidified chromates and silvered in 0.75-1.0% silver nitrate for 12-24 hours at 37-40° C. gave at least three times as many good preparations as similar specimens chromated with plain potassium dichromate solution.  相似文献   

15.
Tyler  Germund  Olsson  Tommy 《Plant and Soil》2001,230(2):307-321
This study reports effects on soil solution chemistry and plant uptake of 55 elements (Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Gd, Ge, Hf, Hg, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, S, Sb, Sc, Se, Si, Sm, Sr, Tb, Th, Tl, U, V, W, Y, Yb, Zn, Zr) by raising the pH using addition of fine-grained precipitated calcium carbonate at 20 rates (yielding a soil solution pH range of 5.2 – 7.8) to A horizon samples of an acid Cambisol, cultivating a common grass (Agrostis capillaris L.) and determining the soil solution, root and shoot concentrations of these elements at the end of the experiment. For many of these elements, there is little or no previous information about concentrations in soil solutions, or in plant biomass, as related to soil pH/acidity or addition of calcium carbonate. Soil solutions were obtained by high speed centrifugation and ultrafiltration (0.2 m) of samples at 60% water-holding capacity. Concentrations of elements were determined by ICP-ES or (in most elements) ICP-MS, using isotopes specified. Soil solution pH, HCO3 and organic C were also determined.Concentrations of elements in the biomass of A. capillaris were usually inversely related to soil solution pH. The most apparent (p<0.001) inverse, though often curvilinear, relationships between pH and concentrations in shoot biomass were measured for Ag, As, B, Ba, Eu, Ge, Li, Mn, Ni, P and Sr. Positive relationships (p<0.05) were only measured in Ca, Hg, Mg, Mo and S. For concentrations in root biomass, relationships were mostly, but not always, of the same sign and of a similar strength. Though soil solution pH and concentrations of elements were usually quite closely correlated, pH and/or HCO 3 concentration more often accounted for a higher share of the variability in biomass concentration of elements than did soil solution concentration of the same element.  相似文献   

16.
ProjectFicoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations.ProcedureWe determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry.ResultsCompared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination.ConclusionsFicoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes.  相似文献   

17.
La Paz Bay and La Paz Lagoon are water bodies of the Gulf of California that are influenced by waste water discharges from the City of La Paz and from activities of the phosphorite mining company “Rofomex”. Because seaweeds concentrate elements from the water and are used as effective indicators of contamination by metals, we investigated their usefulness in this region. Concentrations of certain major elements (Ca, Fe, K and Na) and trace elements (As, Ba, Co, Cr, Cs, Hf, Rb, Sb, Sc, Se, Sr, Ta, Th, U, Zn and Zr) were determined in 12 species of seaweeds from La Paz Bay and La Paz Lagoon using instrumental neutron activation analysis. The contents of trace elements of environmental importance (As, Co, Cr, Fe, Sb, Se and Zn) in all studied samples are within the range of typical levels for a pristine environment not subjected to anthropogenic impact. Somewhat higher concentrations of Cr (81mg kg−1), Hf (4mg kg−1), Rb (48mg kg−1), Sc (6.3mg kg−1), Ta (0.95mg kg−1), Th (6.8mg kg−1), U (33mg kg−1) and Zn (90mg kg−1) were found in the green seaweed species Ulva (formerly Enteromorpha) intestinalis, whereas such elements as As (77mg kg−1), Sb (1.4mg kg−1) and Se (1.8mg kg−1) were mainly concentrated in the species Sargassum sinicola, Codium cuneatum and Padina mexicana respectively. Because of their higher abundance and heterogeneity in elemental composition the seaweeds species Ulva intestinalis and Caulerpa sertularioides seem to be more suitable for further biomonitoring of heavy metal pollution of the coastal waters in this zone.  相似文献   

18.
The concentrations of 22 major and trace elements in livers from rats aging from 5 to 113 weeks old were determined. The rats investigated were the same rats previously reported with respect to 29 elements in bones (femur) and 26 elements in kidneys. The samples were decomposed with high-purity nitric acid and hydrogen peroxide. Seven elements (Na, Mg, P, K, Ca, Fe and Zn) were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES), and 15 elements (Mn, Co, Cu, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Cs, Ba, Pb and Bi) were determined by inductively coupled plasma mass spectrometry (ICP-MS). Analysis of variance (ANOVA) for age variations indicated that the concentrations of many elements, such as Mg, P, K, Mn, Fe, Cu, Zn, Sr, Mo and Cd, were almost constant across the ages of the rats with the exception of 5 weeks old (p > 0.05). Arsenic, Pb and Bi showed significant increasing trends, while Na and Co showed decreasing trends (p < 0.01). Selenium showed a decreasing trend except at the initial stage of 5–9 weeks old. Calcium, Rb, Sn, Sb, Cs and Ba showed significant age-related variations, but their patterns were not monotonic. The liver clearly contrasts with the kidneys, in which many elements showed significant age-related variations with increasing trends. The concentration ranges of Mg, P, K, Mn, Cu, Zn, and Mo were controlled within 15% across all ages of rats. The homeostasis of the aforementioned elements may be well established in the liver. The toxic elements, such as Cd, Pb and Bi, showed a narrow concentration range among age-matched rats.  相似文献   

19.
Detecting sources of insects attacking grain stores can help to develop more effective pest management tools. This study considers combinations of chemical elements as intrinsic markers for tracing resource use by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), a pest of stored maize (Zea mays L., Poaceae) which occurs in natural environments where alternative hosts may support reservoirs of infestation. Prostephanus truncatus were laboratory‐reared on maize or field‐caught in pheromone‐baited flight‐traps. Beetles and hosts were screened for multiple elements using inductively coupled plasma atomic emission spectrometry (ICP‐AES). For elements above detection limits, we tested relationships between determinations for various host plants, and for beetles according to environment where captured. An alternative host, Spondias purpurea L. (Anacardiaceae), contained more Al, B, Ca, Cu, Fe, Mg, Si, and Sr than maize, and less P and Zn. Elemental profiles of beetles were associated with environment, with significantly lower Al, Ca, Cu, Cr, Fe, P, S, Si, Sr, Ti, and Zn determinations in maize‐reared beetles than in beetles captured in agricultural or natural environments. Additionally, Al, Ba, K, P, Sr, and Ti determinations of field beetles captured in agricultural vs. natural environments were significantly different. This suggests Al, Sr, and Ti as candidate markers for environment, and possibly others as elemental concentrations (except B, Ba, Ni, and P) were significantly different in comparisons of all field‐collected vs. maize‐reared beetles. We present a robust practical solution which successfully identified combinations of elemental markers for remotely tracing resource use and dispersal by P. truncatus. We discuss the application of chemical characterisation for identifying intrinsic markers of pests, particularly species with alternative hosts. We discuss how to manage the low replication and unbalanced sample sizes inherent in insect elemental screening, particularly when rarer elements are potential markers.  相似文献   

20.
The concentrations of 55 elements in the millipede, Oxidus gracilis, soil and plant in the habitat were examined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). In all the millipedes, Ca concentration derived from calcium carbonate in the exoskeleton was the highest at average 94 μ/mg-weight. The other major elements were the following: Mg, K, Na, Zn, Fe, Al, Cu, Sr, Ba, Mn and Ti (> 1 ng/mg-body weight), whereas Se, Mo, Ag, Cd, Co, Li and Ce etc. were in trace levels. Interestingly, the various 15 elements such as Ca, Na, Zn, Al, Ba, Ga, Ag, Cd, Co and Y in environmental habitats were well reflected in the body of the millipede. Although the heavy metal contents, in the order of Cu>Pb>Cd, were similar to those of other invertebrates, Cu in the millipede was remarkably high concentration. Zn was maintained in a range of 72–394 ng/mg-weight as essential element in the body and no difference was found in the sexes. The C1 chondrite normalization pattern for lanthanoid series elements in the millipede, soil and plant indicated that the environmental habitats were well protected from pollution. These characteristics of internal elements and metal accumulation in the millipede or relation to their habitats would be useful information for the environmental pollution studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号