首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
EGF-like growth factors activate their ErbB receptors by promoting receptor-mediated homodimerization or, alternatively, by the formation of heterodimers with the orphan ErbB-2 through an as yet unknown mechanism. To investigate the selectivity in dimer formation by ligands, we have applied the phage display approach to obtain ligands with modified C-terminal residues that discriminate between ErbB-2 and ErbB-3 as dimerization partners. We used the epidermal growth factor/transforming growth factor alpha chimera T1E as the template molecule because it binds to ErbB-3 homodimers with low affinity and to ErbB-2/ErbB-3 heterodimers with high affinity. Many phage variants were selected with enhanced binding affinity for ErbB-3 homodimers, indicating that C-terminal residues contribute to the interaction with ErbB-3. These variants were also potent ligands for ErbB-2/ErbB-3 heterodimers despite negative selection for such heterodimers. In contrast, phage variants positively selected for binding to ErbB-2/ErbB-3 heterodimers but negatively selected for binding to ErbB-3 homodimers can be considered as "second best" ErbB-3 binders, which require ErbB-2 heterodimerization for stable complex formation. Our findings imply that epidermal growth factor-like ligands bind ErbB-3 through a multi-domain interaction involving at least both linear endings of the ligand. Apparently the ErbB-3 affinity of a ligand determines whether it can form only ErbB-2/ErbB-3 complexes or also ErbB-3 homodimers. Because no separate binding domain for ErbB-2 could be identified, our data support a model in which ErbB heterodimerization occurs through a receptor-mediated mechanism and not through bivalent ligands.  相似文献   

2.
Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 ? is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.  相似文献   

3.
The bivalent ligand approach, which assumes that two pharmacophores are connected by a spacer, was used to design receptor type-selective ligands for opioid receptors. The first two opioid peptide bivalent ligands with different spacer lengths containing different numbers of hydroxyl groups, (Tyr-D-Ala-Gly-Phe-NH-CH2-CHOH-)2 (Tyr-D-Ala-Gly-Phe-NH-CH2-CHOH-CHOH-)2, were synthesized and their binding to mu, delta, and kappa opioid receptors was characterized. Both analogues were found to possess high opioid in vitro activities. The length of the hydrophilic spacer does not affect the affinity for delta receptors, whereas shorter spacer length increases affinity for mu and even more so for kappa receptors. Thus receptor type-selective peptides for opioid receptors can be designed using the bivalent approach.  相似文献   

4.
Yan Y  Chen K  Yang M  Sun X  Liu S  Chen X 《Amino acids》2011,41(2):439-447
A peptide heterodimer comprises two different receptor-targeting peptide ligands. Molecular imaging probes based on dual-receptor targeting peptide heterodimers exhibit improved tumor targeting efficacy for multi-receptor expressing tumors compared with their parent single-receptor targeting peptide monomers. Previously we have developed bombesin (BBN)-RGD (Arg-Gly-Asp) peptide heterodimers, in which BBN and RGD are covalently connected with an asymmetric glutamate linker (J Med Chem 52:425–432, 2009). Although 18F-labeled heterodimers showed significantly better microPET imaging quality than 18F-labeled RGD and BBN monomers in a PC-3 xenograft model which co-expresses gastrin-releasing peptide receptor (GRPR) and integrin αvβ3, tedious heterodimer synthesis due to the asymmetric nature of glutamate linker restricts their clinical applications. In this study, we report the use of a symmetric linker AEADP [AEADP = 3,3′-(2-aminoethylazanediyl)dipropanoic acid] for the synthesis of BBN-RGD peptide heterodimer. The 18F-labeled heterodimer (18F-FB-AEADP-BBN-RGD) showed comparable microPET imaging results with glutamate linked BBN-RGD heterodimers, indicating that the replacement of glutamate linker with AEADP linker did not affect the biological activities of BBN-RGD heterodimer. The heterodimer synthesis is rather easy and straightforward. Because tumors often co-express multiple receptors, the use of a symmetric linker provides a general method of fast assembly of various peptide heterodimers for imaging multi-receptor expressing tumors.  相似文献   

5.
The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers.  相似文献   

6.
The expression of multivalency in the interaction of antibody with immobilized antigen was evaluated by quantitative affinity chromatography. Zones of radioisotopically labeled bivalent immunoglobulin A monomer derived from the myeloma protein TEPC 15 were eluted from columns of phosphorylcholine-Sepharose both in the absence and presence of competing soluble phosphorylcholine. At sufficient immobilized phosphorylcholine concentration, the variation of elution volume of bivalent monomer with soluble ligand was found to deviate from that observed for the univalent binding of the corresponding Fab fragment. In addition, the apparent binding affinity of the bivalent monomer increased with immobilized antigen density. Use of equations relating the variation of elution volume with free ligand concentration for a bivalent binding protein allowed calculation of microscopic single-site binding parameters for the bivalent monomeric antibody to both immobilized and soluble phosphorylcholine. The chromatographic data not only demonstrate the effect of multivalency on apparent binding affinity but also offer a relatively simple means to measure microscopic dissociation constants for proteins participating in bivalent interactions with their ligands.  相似文献   

7.
The four members of the ErbB family of receptor tyrosine kinases are involved in a complex array of combinatorial interactions involving homo- and heterodimers. Since most cell types express more than one member of the ErbB family, it is difficult to distinguish the biological activities of different homo- and heterodimers. Here we describe a method for inducing homo- or heterodimerization of ErbB receptors by using synthetic ligands without interference from the endogenous receptors. ErbB receptor chimeras containing synthetic ligand binding domains (FK506-binding protein [FKBP] or FKBP-rapamycin-binding domain [FRB]) were homodimerized with the bivalent FKBP ligand AP1510 and heterodimerized with the bifunctional FKBP-FRB ligand rapamycin. AP1510 treatment induced tyrosine phosphorylation of ErbB1 and ErbB2 homodimers and recruitment of Src homology 2 domain-containing proteins (Shc and Grb2). In addition, ErbB1 and ErbB2 homodimers activated downstream signaling pathways leading to Erk2 and Akt phosphorylation. However, only ErbB1 homodimers were internalized upon AP1510 stimulation, and only ErbB1 homodimers were able to associate with and induce phosphorylation of c-Cbl. Cells expressing AP1510-induced ErbB1 homodimers were able to associate with and induce phosphorylation of c-Cbl. Cells expressing AP1510-induced ErbB1 homodimers were able to form foci; however, cells expressing ErbB2 homodimers displayed a five- to sevenfold higher focus-forming ability. Using rapamycin-inducible heterodimerization we show that c-Cbl is unable to associate with ErbB1 in a ErbB1-ErbB2 heterodimer most likely because ErbB2 is unable to phosphorylate the c-Cbl binding site on ErbB1. Thus, we demonstrate that ErbB1 and ErbB2 homodimers differ in their abilities to transform fibroblasts and provide evidence for differential signaling by ErbB homodimers and heterodimers. These observations also validate the use of synthetic ligands to study the signaling and biological specificity of selected ErbB dimers in any cell type.  相似文献   

8.
9.
10.
The Eph receptor tyrosine kinases are overexpressed in many pathologic tissues and have therefore emerged as promising drug target candidates. However, there are few molecules available that can selectively bind to a single Eph receptor and not other members of this large receptor family. Here we report the identification by phage display of peptides that bind selectively to different receptors of the EphB class, including EphB1, EphB2, and EphB4. Peptides with the same EphB receptor specificity compete with each other for binding, suggesting that they have partially overlapping binding sites. In addition, several of the peptides contain amino acid motifs found in the G-H loop of the ephrin-B ligands, which is the region that mediates high-affinity interaction with the EphB receptors. Consistent with targeting the ephrin-binding site, the higher affinity peptides antagonize ephrin binding to the EphB receptors. We also designed an optimized EphB4-binding peptide with affinity comparable with that of the natural ligand, ephrin-B2. These peptides should be useful as selective inhibitors of the pathological activities of EphB receptors and as targeting agents for imaging probes and therapeutic drugs.  相似文献   

11.
Protein scaffold molecules are powerful reagents for targeting various cell signal receptors, enzymes, cytokines and other cancer-related molecules. They belong to the peptide and small protein platform with distinct properties. For the purpose of development of new generation molecular probes, various protein scaffold molecules have been labeled with imaging moieties and evaluated both in vitro and in vivo. Among the evaluated probes Affibody molecules and analogs, cystine knot peptides, and nanobodies have shown especially good characteristics as protein scaffold platforms for development of in vivo molecular probes. Quantitative data obtained from positron emission tomography, single photon emission computed tomography/CT, and optical imaging together with biodistribution studies have shown high tumor uptakes and high tumor-to-blood ratios for these probes. High tumor contrast imaging has been obtained within 1 h after injection. The success of those molecular probes demonstrates the adequacy of protein scaffold strategy as a general approach in molecular probe development.  相似文献   

12.
Membrane proteins, especially G-protein coupled receptors (GPCRs), are interesting and important theragnostic targets since many of them serve in intracellular signaling critical for all aspects of health and disease. The potential utility of designed bivalent ligands as targeting agents for cancer diagnosis and/or therapy can be evaluated by determining their binding to the corresponding receptors. As proof of concept, GPCR cell surface proteins are shown to be targeted specifically using multivalent ligands. We designed, synthesized, and tested a series of bivalent ligands targeting the over-expressed human melanocortin 4 receptor (hMC4R) in human embryonic kidney (HEK) 293 cells. Based on our data suggesting an optimal linker length of 25 ± 10 Å inferred from the bivalent melanocyte stimulating hormone (MSH) agonist, the truncated heptapeptide, referred to as MSH(7): Ac-Ser-Nle-Glu-His-D-Phe-Arg-Trp-NH2 was used to construct a set of bivalent ligands incorporating a hMC4R antagonist, SHU9119: Ac-Nle-c[Asp-His-2′-D-Nal-Arg-Trp-Lys]-NH2 and another set of bivalent ligands containing the SHU9119 antagonist pharmacophore on both side of the optimized linkers. These two binding motifs within the bivalent constructs were conjoined by semi-rigid (Pro-Gly)3 units with or without the flexible poly(ethylene glycol) (PEGO) moieties. Lanthanide-based competitive binding assays showed bivalent ligands binds to the hMC4R with up to 240-fold higher affinity than the corresponding linked monovalent ligands.  相似文献   

13.
The Eph receptors are a large family of receptor tyrosine kinases. Their kinase activity and downstream signaling ability are stimulated by the binding of cell surface-associated ligands, the ephrins. The ensuing signals are bidirectional because the ephrins can also transduce signals (known as reverse signals) following their interaction with Eph receptors. The ephrin-binding pocket in the extracellular N-terminal domain of the Eph receptors and the ATP-binding pocket in the intracellular kinase domain represent potential binding sites for peptides and small molecules. Indeed, a number of peptides and chemical compounds that target Eph receptors and inhibit ephrin binding or kinase activity have been identified. These molecules show promise as probes to study Eph receptor/ephrin biology, as lead compounds for drug development, and as targeting agents to deliver drugs or imaging agents to tumors. Current challenges are to find (1) small molecules that inhibit Eph receptor-ephrin interactions with high binding affinity and good lead-like properties and (2) selective kinase inhibitors that preferentially target the Eph receptor family or subsets of Eph receptors. Strategies that could also be explored include targeting additional Eph receptor interfaces and the ephrin ligands.  相似文献   

14.
We have developed a novel radiogallium (Ga)–DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging. A CXCR4 imaging probe with two CXCR4 antagonists (Ac-TZ14011) on Ga–DOTA core, Ga–DOTA-TZ2, was synthesized, and the affinity and binding to CXCR4 was evaluated in CXCR4 expressing cells in vitro. The affinity of Ga–DOTA-TZ2 for CXCR4 was 20-fold greater than the corresponding monovalent probe, Ga–DOTA-TZ1. 67Ga–DOTA-TZ2 showed the significantly higher accumulation in CXCR4-expressing tumor cells compared with 67Ga–DOTA-TZ1, suggesting the bivalent effect enhances its binding to CXCR4. The incorporation of two CXCR4 antagonists to Ga–DOTA could be effective in detecting CXCR4-expressing tumors.  相似文献   

15.
In the last few years, significant experimental evidence has accumulated showing that many G protein coupled receptors (GPCRs) are structurally and perhaps functionally homodimers. Recently, a number of studies have demonstrated that many GPCRs, notably GABA(B), somatostatin, and delta and kappa opioid receptors form heterodimers, as well. Based on these observations, we undertook a pharmacological and functional analysis of HEK 293 cells transiently transfected with the beta1AR or beta2AR or with both subtypes together. High-affinity binding for subtype-specific ligands (betaxolol and xamoterol for the beta1AR, and ICI 118,551 and procaterol for the beta2AR) was detected in cells expressing the cognate receptors alone with values similar to those reported in the literature. However, a significant portion of these high-affinity interactions were lost when both receptors were expressed together while nonspecific ligands (propranolol and isoproterenol) retained their normal affinities. When competition assays were performed with each subtype-specific ligand in the presence of a constant concentration of the other subtype-specific ligand, the high-affinity binding site was rescued, suggesting that the two receptor subtypes were interacting in a fashion consistent with positive cooperativity. Our data suggest that the beta1AR and beta2AR can form heterodimers and that these receptors have altered pharmacological properties from the receptor homodimers.  相似文献   

16.
17.
18.
D Kim  Y Yan  CA Valencia  R Liu 《PloS one》2012,7(8):e43077
Multivalency of targeting ligands provides significantly increased binding strength towards their molecular targets. Here, we report the development of a novel heptameric targeting system, with general applications, constructed by fusing a target-binding domain with the heptamerization domain of the Archaeal RNA binding protein Sm1 through a flexible hinge peptide. The previously reported affibody molecules against EGFR and HER2, Z(EGFR) and Z(HER2), were used as target binding moieties. The fusion molecules were highly expressed in E. coli as soluble proteins and efficiently self-assembled into multimeric targeting ligands with the heptamer as the predominant form. We demonstrated that the heptameric molecules were resistant to protease-mediated digestion or heat- and SDS-induced denaturation. Surface plasmon resonance (SPR) analysis showed that both heptameric Z(EGFR) and Z(HER2) ligands have a significantly enhanced binding strength to their target receptors with a nearly 100 to 1000 fold increase relative to the monomeric ligands. Cellular binding assays showed that heptameric ligands maintained their target-binding specificities similar to the monomeric forms towards their respective receptor. The non-toxic property of each heptameric ligand was demonstrated by the cell proliferation assay. In general,, the heptamerization strategy we describe here could be applied to the facile and efficient engineering of other protein domain- or short peptide-based affinity molecules to acquire significantly improved target-binding strengths with potential applications in the targeted delivery of various imaging or therapeutic agents..  相似文献   

19.
Angiogenesis is an important process in cancer growth and metastasis. During the tumor angiogenic process, endothelial cells express various cell surface receptors which can be utilized for molecular imaging and targeted drug delivery. One such protein receptor of interest is the integrin alphav beta3. Our group is involved in the development of molecular imaging probes and drug delivery systems targeting alphav beta3. Based on extensive lead optimization study with the integrin antagonist compounds, we have developed a new generation of integrin alphav beta3 compound (IA) which has superior binding affinity to alphav beta3. Utilizing this IA as a targeting agent, we have developed a novel integrin-targeted nanoparticle (ITNP) system for targ alphav beta3 was observed. These ITNPs also were rapidly taken up by cells that express alphav beta3. The ITNPs accumulated in the angiogenic vessels, after systemic administration in a murine squamous cell carcinoma model. This novel intergrin targeted ITNP platform will likely have an application in targeted delivery of drugs and genes in vivo and can also be used for molecular imaging.  相似文献   

20.
Both homo- and hetero-dimers of ErbB receptor tyrosine kinases mediate signaling by a large group of epidermal growth factor (EGF)-like ligands. However, some ligands are more potent than others, although they bind to the same direct receptor. In addition, signaling by receptor heterodimers is superior to homodimers. We addressed the mechanism underlying these two features of signal tuning by using three ligands: EGF; transforming growth factor alpha (TGFalpha); and their chimera, denoted E4T, which act on cells singly expressing ErbB-1 as a weak, a strong, and a very strong agonist, respectively. Co-expression of ErbB-2, a developmentally important co-receptor whose expression is frequently elevated in human cancers, specifically potentiated EGF signaling to the level achieved by TGFalpha, an effect that was partially mimicked by ErbB-3. Analysis of the mechanism underlying this trans-potentiation implied that EGF-driven homodimers of ErbB-1 are destined for intracellular degradation, whereas the corresponding heterodimers with ErbB-2 or with ErbB-3, dissociate in the early endosome. As a consequence, in the presence of either co-receptor, ErbB-1 is recycled to the cell surface and its signaling is enhanced. This latter route is followed by TGFalpha-driven homodimers of ErbB-1, and also by E4T-bound receptors, whose signaling is further enhanced by repeated cycles of binding and dissociation from the receptors. We conclude that alternative endocytic routes of homo- and hetero-dimeric receptor complexes may contribute to tuning and diversification of signal transduction. In addition, the ability of ErbB-2 to shunt ligand-activated receptors to recycling may explain, in part, its oncogenic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号