首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2010,45(3):317-322
The simple fed-batch fermentation was carried out to produce E. coli XL1-Blue/pHCE-InaN-GAPDH Ghost 37 SDM as a ghost bacterial vaccine (GBV). The fermentation was carried out in four phases of batch fermentation (phase 1), fed-batch fermentation with intermittent feeding strategy (phase 2), thermal induction by temperature increase to 42 °C for the expression of lysis E gene (GBV formation, phase 3) and high temperature holding phase to increase the efficiency of GBV formation (phase 4). After the high temperature holding phase at 47 °C, efficiency of the GBV formation reached 99.7% with the culture OD600 of 57.9. The maximum GBV of 22 g dcw/l was obtained. The protective efficacy of GBV was determined by a challenge test to immunized olive flounder using live Streptococcus iniae. In 14 days of challenge test, the positive and E. coli strain control groups showed 100% cumulative mortalities. Test groups immunized by formalin killed cell (FKC) vaccine, GBV with 42 °C and 47 °C heat shock showed 66%, 54% and 54% of cumulative mortalities, respectively. These results suggest that GBV showed the effectiveness for the protection from the streptococcal infection and had higher potential to induce protective antibodies than FKC vaccine.  相似文献   

2.
During fed-batch cultivation of Escherichia coli K-12, the proteomic response to a temperature downshift from 37 to 20°C was quantitatively monitored and analyzed by using two-dimensional electrophoresis. When the temperature of exponentially growing E. coli K-12 culture was downshifted to 20°C, the synthesis level of 57 intracellular proteins showed significant changes for a prolonged period of time, compared to the fed-batch culture controlled at 37°C. Thus, these proteins are regarded as important stress proteins responsive to cold shock, which were analyzed by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and identified using the E. coli SWISS-2DPAGE database. Most of the identified proteins were shown to be involved in energy metabolism, several cellular molecule biosynthetic pathways and catabolism, cell processes, flagellar biosynthesis and motility, and protein translation and folding. The systematic approach to the monitoring of proteomic responses and the detailed analysis results reported in this article would be useful in understanding the metabolic adaptation to lowered culture temperature and designing efficient fermentation strategies for the production of recombinant proteins and metabolites using E. coli strains.  相似文献   

3.
The distribution of coliphages infecting different Escherichia coli virotypes (EHEC, EIEC, EPEC, ETEC) and an avirulent strain (K-12) in sewage system of a hospital and a sewage treatment plant (STP) was investigated by culture-based agar overlay methods. Coliphages were found in all the samples except stool dumping site in the sewage system of the hospital and lagoon of the STP. Bacteriophage count (pfu/ml) infecting E. coli strains showed the following ascending pattern (EHEC < EIEC < EPEC < ETEC < E coli K-12) in all the collected samples except one. Phages capable of infecting avirulent E. coli K-12 strains were present in the highest number among all the examined locations. Phages specific for E. coli K-12 presented high diversity in plaque size on the bacterial lawn. Virulent E. coli specific coliphages rarely produced plaques with diameter of 1–2 mm or over. Conventional agar overlay method was found to be not satisfactory for phage community analysis from primary stool dumping site of the hospital, probably due to the presence of high concentration of antimicrobial substances. The gradual decrease seen in the five groups of coliphage quantity with the ongoing treatment process and then the absolute absence of coliphages in the outlet of the examined treatment plant is indicative of the usefulness of the treatment processes practiced there.  相似文献   

4.
5.
Edwardsiella tarda and Streptococcus iniae are important fish pathogens. We have reported previously a live E. tarda vaccine based on the attenuated strain TX5RM and a S. iniae DNA vaccine based on the antigen Sia10. In this study, we examined the possibility of constructing a cross‐genus vaccine by taking advantage of the residual infectivity of TX5RM and using it as a carrier host for the natural delivery of a S. iniae DNA vaccine. For this purpose, the recombinant TX5RM, TX5RMS10, was created, which harbours and retains stably the DNA vaccine plasmid pCS10 that expresses Sia10. When flounder were vaccinated with TX5RMS10 via oral and immersion routes, TX5RMS10 was detected in multiple tissues within 12–14 days postvaccination (p.v.). At 7 and 14 days p.v., expression of the DNA vaccine was detected in spleen, kidney and liver. Following E. tarda and S. iniae challenge at one and 2 months p.v., the vaccinated fish exhibited relative per cent survival rates of 69–83%. Immunological analysis indicated that TX5RMS10‐vaccinated fish produced specific serum antibodies and exhibited enhanced expression of a wide range of immune genes.  相似文献   

6.
The growth dynamics of the synthesis of monoamine neuromediators serotonin, norepinephrine, and dopamine in Escherichia coli K-12 was investigated for the first time using high performance liquid chromatography with electrodetection. Maximum (micromolar) concentrations of these compounds were detected in E. coli cells during the early growth phases; their intracellular content decreases after the transition to late growth phases. E. coli biomass contains (i) the substances DOPA and 5-hydroxytryptamine that serve in animal cells as neuromediator precursors and (ii) the products of their oxidative deamination. Presumably, the biosynthesis and degradation of monoamine neuromediators in bacterial cells involves enzyme systems analogous to those typical of animals. The culture fluid of E. coli contains micromolar concentrations of DOPA and nanomolar of serotonin, dopamine, and norepinephrine during the late growth phase. These concentrations are sufficient for animal/human receptors to bind them. This article deals with the potential biotechnological applications of the data obtained.  相似文献   

7.
In an optimized sorbitol/yeast extract/mineral salt medium up to 12 U/l CMP-N-acetyl-neuraminic-acid (Neu5Ac) synthetase was produced by Escherichia coli K-235 in shake-flask culture. A colony mutant of this strain, E. coli K-235/CS1, was isolated with improved enzyme formation: in shake flasks with a yield of up to 20.8 U/l and 54 mU/mg protein in the cell extract. With this strain 26500 U CMP-Neu5Ac synthetase was produced with a high specific activity (0.128 U/mg) by fed-batch fermentation on 230-1 scale. On a 10-l scale the enzyme yield was 191 U/l culture medium. The enzyme was partially purified by precipitation with polyethyleneglycol resulting in a three- to fourfold enrichment and a recovery rate of more than 80%; most of the CTP hydrolysing enzymes were removed. The native synthetase was deactivated completely by incubation at 45°C for 10 min, but could be stabilized remarkably by glycerol and different salts. The enzyme was used for the preparative synthesis of CMP-Neu5Ac with a conversion yield of 87% based on CTP.  相似文献   

8.
A cultivation strategy combining the advantages of temperature-limited fed-batch and probing feeding control is presented. The technique was evaluated in fed-batch cultivations with E. coli BL21(DE3) producing xylanase in a 3 liter bioreactor. A 20% increase in cell mass was achieved and the usual decrease in specific enzyme activity normally observed during the late production phase was diminished with the new technique. The method was further tested by growing E. coli W3110 in a larger bioreactor (50 l). It is a suitable cultivation technique when the O2 transfer capacity of the reactor is reached and it is desired to continue to produce the recombinant protein.Revisions requested 13 April 2005; Revisions received 6 May 2005  相似文献   

9.

Background  

The green fluorescent protein has revolutionized many areas of cell biology and biotechnology since it is widely used in determining gene expression and for localization of protein expression. Expression of recombinant GFP in E. coli K12 host from pBAD24M-GFP construct upon arabinose induction was significantly lower than that seen in E. coli B cells with higher expression at 30°C as compared to 37°C in E. coli K12 hosts. Since OmpT levels are higher at 37°C than at 30°C, it prompted us to modify the OmpT proteolytic sites of GFP and examine such an effect on GFP expression and fluorescence. Upon modification of one of the two putative OmpT cleavage sites of GFP, we observed several folds enhanced fluorescence of GFP as compared to unmodified GFPuv (Wild Type-WT). The western blot studies of the WT and the SDM II GFP mutant using anti-GFP antibody showed prominent degradation of GFP with negligible degradation in case of SDM II GFP mutant while no such degradation of GFP was seen for both the clones when expressed in BL21 cells. The SDM II GFP mutant also showed enhanced GFP fluorescence in other E. coli K12 OmpT hosts like E. coli JM109 and LE 392 in comparison to WT GFPuv. Inclusion of an OmpT inhibitor, like zinc with WT GFP lysate expressed from an E. coli K12 host was found to reduce degradation of GFP fluorescence by two fold.  相似文献   

10.
Sucrose is one of the most promising carbon sources for industrial fermentation. To achieve sucrose catabolism, the sucrose utilization operons have been introduced into microorganisms that are not able to utilize sucrose. However, the rates of growth and sucrose uptake of these engineered strains were relatively low to be successfully employed for industrial applications. Here, we report a practical example of developing sucrose-utilizing microorganisms using Escherichia coli K-12 as a model system. The sucrose utilizing ability was acquired by introducing only β-fructofuranosidase from three different sucrose-utilizing organisms (Mannheimia succiniciproducens, E. coli W, and Bacillus subtilis). Among them, the M. succiniciproducens β-fructofuranosidase was found to be the most effective for sucrose utilization. Analyses of the underlying mechanism revealed that sucrose was hydrolyzed into glucose and fructose in the extracellular space and both liberated hexoses could be transported by their respective uptake systems in E. coli K-12. To prove that this system can also be applied for the production of useful metabolites, the M. succiniciproducens β-fructofuranosidase was introduced into the engineered l-threonine production strain of E. coli K-12. This recombinant strain was able to produce 51.1 g/L l-threonine by fed-batch culture, resulting in an overall yield of 0.284 g l-threonine per g sucrose. This simple approach to make E. coli K-12 to acquire sucrose-utilizing ability and its successful biotechnological application can be employed to develop sustainable bioprocesses using renewable biomass.  相似文献   

11.
Shufflon DNA rearrangement selects one of seven PilV proteins with different C-terminal segments, which then becomes a minor component of the thin pili of Escherichia coli strains bearing the plasmid R64. The PilV proteins determine the recipient specificity in liquid matings. A recipient Escherichia coli K-12 strain was specifically recognized by the PilVA′, -C, and -C′ proteins, while E. coli B was recognized only by the PilVA′ protein. To identify specific PilV receptors in the recipient bacterial cells, R64 liquid matings were performed using various E. coli K-12 waa (rfa) mutants and E. coli B transformants as recipient cells. E. coli K-12 waa mutants lack receptors for specific PilV proteins. E. coli B cells carrying waaJ or waaJKL genes of E. coli K-12 were recognized by donors expressing the PilVC′ protein or the PilVC and -C′ proteins, respectively, in addition to the PilVA′ protein. Addition of E. coli K-12 or B lipopolysaccharide (LPS) specifically inhibited liquid matings. We conclude that the PilV proteins of the thin pili of R64-bearing donors recognize LPS molecules located on the surface of various recipient bacterial cells in liquid matings. Received: 2 September 1999 / Accepted: 18 November 1999  相似文献   

12.
In most cases of E. coli high cell density fermentation process, maximizing cell concentration helps in increasing the volumetric productivity of recombinant proteins usually at the cost of lower specific cellular protein yield. In this report, we describe a process for maintaining the specific cellular yield of Ovine growth hormone (oGH) from E. coli by optimal feeding of yeast extract during high cell density fermentation process. Recombinant oGH was produced as inclusion bodies in Escherichia coli. Specific cellular yield of recombinant oGH was maintained by feeding yeast extract along with glucose during fed-batch fermentation. Glucose to yeast extract ratio of 0.75 was found to be optimum for maintaining the specific cellular oGH yield of 66 mg/g of E. coli cells. Continuous feeding of yeast extract along with glucose helped in reducing acetic acid secretion and promoted higher cell growth during fed-batch fermentation. High cell growth of E. coli and high specific yield of recombinant oGH thus helped in achieving high volumetric productivity of the expressed protein. A maximum of 2 g/l of ovine growth hormone was expressed as inclusion bodies in 12 h of fed-batch fermentation.  相似文献   

13.
14.
Four serotypes of two genera, Escherichia coli O8 and O9 and Klebsiella O3 and O5, produce the O polysaccharides consisting of mannose homopolymers. Previously we reported the isolation and expression of E. coli O9 rfb in E. coli K-12 strains (Kido et al, J. Bacteriol., 171: 3629–3633, 1989). In this study, R' plasmids carrying his-rfb region of the other three strains were isolated and expressed in E. coli K-12 strain. Serological study of lipopolysaccharides (LPS) synthesized in E. coli K-12 strain was carried out. His-linked rfb genes from E. coli O9 and Klebsiella O3 directed the synthesis of O polysaccharides with the same antigenicity as those of the parental strains in E. coli K-12 strain. On the other hand, rfb genes from E. coli O8 and Klebsiella O5 directed the synthesis of O polysaccharides which were antigenically not identical but partially common to those of the parental strains. A rough strain derived from E. coli O8 synthesized LPS which showed the identical antigenicity as the wild strain when the his-rfb region of E. coli O8 was introduced. The results suggest that some genes located distantly from his are additionally required to complete the synthesis of O polysaccharides of E. coli O8 and Klebsiella O5.  相似文献   

15.
Escherichia coli K-12 was cultured under anaerobic conditions to form biofilm on carbon fiber electrodes in glucose-containing medium. The anodic current increased with the development of the biofilm and depended on the glucose concentration. Cyclic voltammetric results support the presence of a redox compound(s) excreted from E. coli cells in the biofilm. The compound remained in the film under conditions of continuous flow and gave a couple of oxidation and reduction waves, which may be assigned to a menaquinone-like compound based on the mid-point potential (−0.22 V vs Ag|AgCl at pH 7.1) and its pH dependence. The catalytic current started to increase around the anodic peak potential of the redox compound and also increased by the permeabilization of the E. coli cell membranes with ethylenediamine tetraacetic acid-treatment. The results indicate that the E. coli-excreted redox compound works as a mediator for the electron transfer from the E. coli cells to the electrode as the final electron acceptor. The activity of the redox compound in the E. coli-biofilm as a mediator with some mobility was also verified for diaphorase-catalyzed electrochemical oxidation of NADH.  相似文献   

16.

Background  

Insertion Sequence (IS) elements are mobile genetic elements widely distributed among bacteria. Their activities cause mutations, promoting genetic diversity and sometimes adaptation. Previous studies have examined their copy number and distribution in Escherichia coli K-12 and natural isolates. Here, we map most of the IS elements in E. coli B and compare their locations with the published genomes of K-12 and O157:H7.  相似文献   

17.
We characterized the ectopic gene conversions in the genomes of the K-12 MG1655, O157:H7 Sakai, O157:H7 EDL933, and CFT073 strains of E coli. Compared to the three pathogenic strains, the K-12 strain has a much smaller number of gene families, its gene families contain fewer genes, and gene conversions are less frequent. Whereas the three pathogenic strains have gene conversions covering hundreds of nucleotides when their flanking regions have as little as 50% similarity, flanking region similarity of at least 94% on both sides of the converted region is required to observe conversions of more than 87 nucleotides in the K-12 strain. Recombination is therefore more frequent and requires less sequence similarity in the three pathogenic strains than in K-12. This higher recombination level might be due to mutations in some of their mismatch-repair genes. In contrast with the gene conversions present in the yeast genome, the gene conversions found in the E. coli genomes do not occur more frequently between duplicated genes that are close to one another than between duplicated genes that are far apart and are randomly distributed along the length of the genes. In E. coli, gene conversions are not more frequent near the origin of replication. However, they do occur more frequently near the terminus of replication of the Sakai genome, where multigene family members are more abundant. This suggests that, in E. coli, gene conversions occur randomly between genes located in different chromosomal locations or located on different copies of the multiple chromosomes found in E. coli cells.  相似文献   

18.
通过腹腔注射、口服两种免疫途径探讨迟缓爱德华菌菌蜕疫苗对罗非鱼Oreochromis niloticus的免疫保护效果。将制备的迟缓爱德华菌菌蜕疫苗(ETG)和福尔马林灭活疫苗(FKC)采用腹腔注射、口服两种免疫途径免疫罗非鱼,分别于免疫后14d、21d和28d采集罗非鱼血清、头肾、脾脏,测定血清中抗体IgM水平,血清中酸性磷酸酶(ACP酶)、超氧化物歧化酶(SOD酶)活性及罗非鱼头肾和脾脏中白介素(IL-1)、肿瘤坏死因子(TNF)、干扰素(IFN)、Caspase3等细胞因子的相对表达量,并通过攻毒试验得到菌蜕疫苗、福尔马林灭活疫苗两种疫苗的相对免疫保护率。免疫组罗非鱼的血清抗体水平均极显著高于(P<0.01)对照组,ETG注射组抗体效价极显著高于(P<0.01)FKC口服组。免疫28d,免疫组SOD、ACP酶活力显著高于(P<0.05)对照组(Group E、F);在头肾中,免疫组(Group A、B)TNF、IL-1和IFN的相对表达量显著高于(P<0.05)对照组(Group E、F)。在免疫保护试验中,所有免疫组的免疫保护率均显著高于(P<0.05)对照组,注射、口服菌蜕疫苗的相对保护率分别为79%、77%,注射、口服灭活疫苗组的的相对保护率分别为62%、60%,但两种疫苗免疫保护率无显著差异。试验研制的菌蜕疫苗得到更高的免疫保护率,菌蜕疫苗在预防罗非鱼爱德华菌病中有良好的研究价值和应用前景。  相似文献   

19.
A metabolically engineered Escherichia coli strain SBS550MG (pHL413) was used in this study to investigate the impact of various culture operating conditions for improving the specific succinate production rate for better final titer while maintaining the theoretical succinate yield on glucose in multiphase fed-batch cultures. Previously, we reported that changes in the level of aeration during the cell growth phase significantly modified gene expression profiles and metabolic fluxes in this system (Martinez et al. 2010). Based on these observations, the examination of culture conditions was mainly focused on the aerobic growth phase. It was found that 2–5 h of low dissolved oxygen culture during the aerobic phase improves cell productivity, but pH control during the aerobic phase was not favorable for the system. Cell viability has been identified as a major limiting factor for succinate production. Supplementing LB medium and betaine, an anti-osmotic stress reagent, did not improve cell activity. A higher succinate titer (537.8 mM) using the current metabolic engineering E. coli strain was achieved, which can potentially be improved further by increasing cell viability.  相似文献   

20.
The first step in branched-chain amino acid biosynthesis is catalyzed by acetohydroxyacid synthase (EC 2.2.1.6). This reaction involves decarboxylation of pyruvate followed by condensation with either an additional pyruvate molecule or with 2-oxobutyrate. The enzyme requires three cofactors, thiamine diphosphate (ThDP), a divalent ion, and flavin adenine dinucleotide (FAD). Escherichia coli contains three active isoenzymes, and acetohydroxyacid synthase I (AHAS I) large subunit is encoded by the ilvB gene. In this study, the ilvB gene from E. coli K-12 was cloned into expression vector pETDuet-1, and was expressed in E. coli BL21 (DH3). The purified protein was identified on a 12% SDS–PAGE gel as a single band with a mass of 65 kDa. The optimum temperature, buffer, and pH for E. coli K-12 AHAS I were 37 °C, potassium phosphate buffer, and 7.5. Km values for E. coli K-12 AHAS I binding to pyruvate, Mg+2, ThDP, and FAD were 4.15, 1.26, 0.2 mM, and 0.61 μM respectively. Inhibition of purified AHAS I protein was determined with herbicides and new compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号